Office of Traffic and Safety
Traffic Engineering Design Division Traffic Control Devices Design Manual

Appendix A-5

GROUND MOUNTED SUPPORT CHARTS

WOOD SUPPORTS

Wood supports are selected using the tables included in this section of the Appendix. For standard signs, the Book of Standards gives the required number and size of wood supports. The tables given here list the maximum sign area for each combination of longest support, post size, and number of supports. To read these tables, find your longest support length (L) in the left most column, read across that row to find the sign area (Square Feet) equal to or next larger than your sign, and read up to find the size and number of supports.

As an example, consider the support size necessary for the following sign:

Using the wood support chart for Districts 1,2, and 5 with L= 9.5 Feet and an area of 40 SF, we can use $2-6$ "x8" supports (62 SF). This presents the designer with some choices, because two 6"x8" supports must be 7'-0" apart to meet breakaway requirements. These are:

1. The first choice in this situation would be to use the 6 " $\times 8$ " supports and clearly mark on the plans that a minimum of 7 '-0" spacing must be used. This deviates from SHA spacing standards. This allows the preferred support size to be used.
2. The second choice in this situation would be to mount the sign on two 6 "x8" supports or three 6"x6" supports (nonbreakaway) and to install w-beam to protect the sign.
3. The third, will be to use breakaway steel supports. This would be extremely overdesigned.

These types of situations are frequently encountered when designing sign supports. The designer should use engineering judgement to ensure that the type of support is matched with the intended function of the sign.

NON-BREAKAWAY STEEL SUPPORTS

Non-Breakaway steel supports are selected based on the sign width (W), the sign height (H), and Lmax, the maximum distance between the top of footing and the bottom of sign. Use the following steps to determine the appropriate support size. Note that Lmax is calculated based on your support spacing and roadside elevations (see the chapters on Field Review and Sign Supports).

- The information in these tables is grouped by sign width, so in the left most column of the table, find the appropriate sign width. Since the table is incremented every two feet, use the next higher grouping for odd values of W.
- Within width group W, find the appropriate value of $L_{\text {max }}$ in column 2.
- From $L_{m a x}$, read horizontally until you reach the column representing the height of your sign (H).
- You now have the required steel support size.

The sizes listed in the table take the form W6x9, and represent the structural shape, followed by the beam depth, followed by the weight of the beam in pounds per foot. All of the sizes used in this table have a Category Code Number, however, if you are working with an existing contract you should try to work with the sizes used in the contract. Areawide contracts typically use W6x9, W6x15, W8x21, W10x26, W14x30, W16x31, W18x35, W18x40, and W21x44 supports. For nonbreakaway foundation details refer to Standard MD 801.04.

Office of Traffic and Safety
Traffic Engineering Design Division Traffic Control Devices Design Manual

BREAKAWAY STEEL SUPPORTS

Breakaway steel supports are selected based on the AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals" requirements. These requirements include the wind speed, structure design life, yield stress, width and height of sign panel, number of sign posts, distance between posts and the maximum under sign clearance. SHA requires designers to use the Transpo Industries "Break-Safe" sign post selection program for selecting the appropriate steel supports in their design. This software incorporates the AASHTO requirements listed above and allows users to input data for each parameter.

Square Tube and I-Beam are the two types of breakaway steel supports to be used in Maryland. Based on AASHTO guidelines, the clear distance between the inside edge of the two breakaway steel supports using the Transpo 'B' system must be greater than 7 feet. Therefore, for signs that cannot accommodate two supports while maintaining 7' of clear distance, one breakaway steel square tube post must be used. For all other applications with clear distances exceeding 7' between supports, I-Beams must be used. The 'Break-Safe' sign post selection software has programs for both I-Beam and Square Tube supports.

The designer must select either the I-Beam or the Square Tube Program from the list of programs in the 'Break-Safe' menu. Both programs require the following parameters to be input the designer:

- Basic Wind Speed for Location (mph): Input 100 mph for all applications.
- Structure Design Life / Recurrence Interval (10, 25, 50, or 100 years): Input 10 years for all applications in accordance with the AASHTO recommendation for typical roadside sign structures.
- Yield Stress for Steel I-Beam Post (psi): Use 36,000 psi (ASTM A36) for standard steel I-beam shapes.

Use 46,000 psi (ASTM A500), Grade B for structural square steel tube post.

- Width of Sign Panel (ft): Measured horizontally from left edge to right edge of sign panel.
- Height of Sign Panel (ft): Measured vertically from top edge to bottom edge of sign panel.
- Maximum Under Sign Clearance (ft): Measured vertically from the bottom edge of the sign panel to the ground at the location of the longest post. May include fractions of a foot, for example 12.75 ft . Note that multiple-post breakaway signs must have an under sign clearance of at least 7.0 ft , in accordance with Section 12.5.3 of the AASHTO Specifications.
- Number of Posts (1, 2, 3, 4, or 5): Must be an integer. The program assumes that all posts in the sign structure are the same size, type and material.
- Clear Distance Between Adjacent Posts (ft): Measured horizontally from inside edge of one post to inside edge of the adjacent post. May include fractions of a foot, for example 7.25 ft . This distance is zero (0) for single-post signs. For multiplepost signs, the program assumes that all posts are evenly spaced i.e. both distances between adjacent posts in a 3post sign are equal.

When all the parameters have been input by the designer, the program outputs the correct minimum steel support size required to satisfy loading conditions that correspond to the input parameters.

The steel I-Beam size calculated by the IBeam program is in the form $W 6 \times 12$, and represents the structural shape, followed by the beam depth, followed by the weight of the beam in pounds per foot.

The steel square tube calculated by the Square Tube Post Program is in the form 4×4 $x 3 / 16$, and represents the width of each side followed by the thickness of the steel.

Office of Traffic and Safety
Traffic Engineering Design Division Traffic Control Devices Design Manual

The designer now has the correct steel support size to be used in the design.

For breakaway foundation details refer to Standards MD 801.04, MD 801.04-01 and MD 801.04-02.

NOTE: W6X9 I-Beam supports shall not be placed on Breakaway System 'B' as per SHA requirements. W6X9 I-Beam supports shall only be installed on Breakaway System 'A'.

Office of Traffic and Safety
Traffic Engineering Design Division

Breakaway Wood Support Selection Chart
 Districts 1, 2 and 5

Office of Traffic and Safety
Traffic Engineering Design Division
Traffic Control Devices Design Manual
Breakaway Wood Support Selection Chart
Districts 3, 4, 6 and 7
Office of Traffic and Safety
Traffic Engineering Design Division Traffic Control Devices Design Manual
Non-Breakaway Wood Support Selection Chart

L (FEET)	Allowable Sign Area (SF)											
	One Post				Two Post				Three Post			
	4"x4"	4"x6"	6"x6"	6"x8"	4"x4"	4"x6"	6"x6"	6"x8"	4"x4"	4"x6"	6"x6"	6"x8"
7	7	18	29	53	14	36	57	107	21	53	86	160
8	6	15	25	47	12	31	50	93	18	45	75	140
9	5	14	22	41	11	27	44	82	16	42	66	124
10	5	12	20	37	9	24	40	74	14	36	59	111
11	4	11	18	33	8	22	36	67	13	33	54	100
12	4	10	16	30	8	19	33	61	11	30	49	92
13	3	9	15	28	7	18	30	56	10	27	45	84
14	3	8	14	26	6	16	27	52	9	24	42	78
15	3	7	13	24	6	15	26	48	8	21	39	72

[^0]MARYLAND STATE HIGHWAY ADMINISTRATION
Office of Traffic and Safety Traffic Engineering Design Division
Traffic Control Devices Design Manual 100 MPH
10 Year Recurr
10 Year Recurrence

$\begin{gathered} w \\ (\text { FEET } \end{gathered}$	L MAX (FEET)	HEIGHT 'H' IN FEET														
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
6	6	W6x9	W6x12	W6x12	W6x12	W6x12	-	-	-							
	8	W6x9	W6x12	W6x15	-	-	-	-	-							
	10	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-
	12	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-
	14	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-
	16	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-
	18	W6x12	W6x12	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-
	20	W6x12	W6x15	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-
8	6	W6x9	W6x12	W6x12	W6x12	W8x18	W8x18	W10x22	W10x22	W10x22						
	8	W6x9	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	W8x18	W10x22	W10x22	W10x22	W10x22	W10x22
	10	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x15	W6x15	W8x18	W8x18	W10x22	W10x22	W10x22	W10x22	W10x22
	12	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	W8x18	W8x18	W8x18	W10x22	W10x22	W10x22	W10x22	W10x22
	14	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	W8x18	W8x18	W8x18	W8x18	-	-	-	-	-
	16	W6x12	W6x12	W6x15	W6x15	W6x15	W8x18	W8x18	W8x18	-	-	-	-	-	-	-
	18	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-
	20	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-
10	6	W6x9	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W8x18	W8x18	W10x22	W10x22	W10x22	-	-
	8	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	W8x18	W10x22	W10x22	W10x22	W10x22	-	-
	10	W6x9	W6x9	W6x9	W6x9	W6x12	W6x15	W6x15	W8x18	W8x18	W10x22	W10x22	W10x22	W10x22	-	-
	12	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	W8x18	W8x18	W8x18	W10x22	W10x22	W10x22	W10x22	-	-
	14	W6x12	W6x12	W6x12	W6x15	W6x15	W8x18	W8x18	W8x18	W8x18	-	-	-	-	-	-
	16	W6x12	W6x15	W6x15	W6x15	W8x18	W8x18	W8x18	-	-	-	-	-	-	-	-
	18	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-
	20	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-	-
12	6	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	W8x18	W10x22	W10x22	W10x22	W10x22	W14x30	W14×30
	8	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	W6x15	W8x18	W10x22	W10x22	W10x22	W12x26	W14×30	W14×30
	10	W6x9	W6x9	W6x9	W6x12	W6x12	W8x18	W8x18	W8x18	W10x22	W10x22	W10x22	W10x22	W12x26	W14x30	W14×30
	12	W6x9	W6x12	W6x12	W6x15	W8x18	W8x18	W8x18	W8x18	W10x22	W10x22	W10x22	W10x26	W12x26	W14×30	W14×30
	14	W6x12	W6x12	W6x15	W8x18	W8x18	W8x18	W8x18	W8x21	W10x22	W10x22	W10x26	W10x26	W12x26	W14x30	W18×35
	16	W6x12	W6x15	W6x15	W8x18	W8x18	W8x21	W8x21	W10x22	W10x26	W10x26	W10x26	W14x30	W14x30	W18x35	-
	18	W6x15	W6x15	W8x18	W8x18	W18x21	W8x21	W10x22	W10x26	W10x26	W14x30	W14x30	-	-	-	-
	20	W6x15	W8x18	W8x18	W8x21	W18x21	W10x26	W10x26	W10x26	W14x30	-	-	-	-	-	-

MARYLAND STATE HIGHWAY ADMINISTRATION

Office of Traffic and Safety Traffic Engineering Design Division
Traffic Control Devices Design Manual

1818×35

3
n
0
0
0
3
3
，
．．．

\pm
3

| |
| :--- | :--- |
| 3 |
| 3 |
| 3 |

 W21×44 W21×44

N
0
0
0
3
3

$\stackrel{\sim}{0}$
0
0
0
\vdots
\vdots

Ω
0
0
3
3

0	0	0
\times	$\underset{ }{x}$	\cdots
\vdots	\times	\times
-	$\underset{-}{\prime}$	$\underset{3}{3}$
3	3	3

1．

W12×26
W14×30

$2 n$	
0	n
0	0
0	
0	0
3	3
3	

W10x22

．
Two Post Selection Chart（A36 Steel）
ヨヨヨ NI ，H，ДHOIヨH

12
$W 8 \times 21$
$W 8 \times 21$
$W 10 \times 22$
$W 10 \times 22$
$W 10 \times 22$
:---:

 0
2
y
1
3
3

W10x2
W10x22
0
0
0
0
\vdots
3
3

10	11

W6x15
W6x15
W8x18
W8x21

W10×22
$\mathbf{W} 10 \times 26$
$W 10 \times 26$

W10×26
∞
\times
\times
\vdots
3

W10×22

$\mathrm{W} 14 \times 30$
$\mathrm{~W} 8 \times 18$

N
N
区
3
3

W8x21

W6x12
W8x18
W8x18
W8821
W10x26
W6x15
W8x18
$\mathrm{W} 8 \times 18$
$\mathrm{~W} 8 \times 21$
$\mathrm{~W} 10 \times 22$
W10×22
W10×26
W10×26
W6x15

W10×26
W8x18
∞
$\overrightarrow{0}$
$\overrightarrow{0}$
3
3

 W8x18

W8x21

7
2
0
3
3

6

MARYLAND STATE HIGHWAY ADMINISTRATION
Office of Traffic and Safety Traffic Engineering Design Division Traffic Control Devices Design Manual 100 MPH
10 Year Recurr
10 Year Recurrence

$\begin{gathered} w \\ (\text { FEET } \end{gathered}$	L MAX (FEET)	HEIGHT 'H' IN FEET														
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
22	6	W6x9	W6x9	W6x12	W6x12	W6x15	W8x18	W10x22	W10x22	W10x22	W10x22	W12x26	W14x30	W16x31	-	-
	8	W6x9	W6x12	W6x12	W6x15	W8x18	W8x18	W10x22	W10x22	W10x22	W14x30	W16x31	W18x35	W21×44	-	-
	10	W6x9	W6x12	W6x15	W8x18	W8x18	W10x22	W10x22	W10x26	W12x26	W14x30	W16x31	W18x35	W21×44	-	-
	12	W6x12	W8x18	W8x18	W8x18	W8x21	W10x22	W10x26	W12x26	W14x30	W16x31	W18x35	W21×44	-	-	-
	14	W6x15	W8x18	W8x18	W8x21	W10x22	W10x26	W10x26	W14x30	W16x31	W18x35	-	-	-	-	-
	16	W8x18	W8x18	W8x21	W10x22	W10x26	W10x26	W14x30	W18x35	-	-	-	-	-	-	-
	18	W8x18	W8x21	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-
	20	W8x21	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-
24	6	W6x9	W6x9	W6x12	W6x15	W8x18	W8x18	W10x22	W10x22	W10x22	W12x26	W14x30	W16x31	W18x35	-	-
	8	W6x9	W6x12	W6x15	W8x18	W8x18	W8x18	W10x22	W10x22	W10x22	W14x30	W16x31	W21x44	W21×44	-	-
	10	W6x12	W6x15	W6x15	W8x18	W8x18	W10x22	W10x22	W10x26	W12x26	W16x31	W18x35	W21x44	-	-	-
	12	W6x12	W8x18	W8x18	W8x21	W10x22	W10x22	W10x26	W12x26	W16x31	W18x35	W21x44	-	-	-	-
	14	W8x18	W8x18	W8x21	W10x22	W10x22	W10x26	W12x26	W16x31	W18x35	-	-	-	-	-	-
	16	W8x18	W8x18	W8x21	W10x26	W10x26	W12x26	W18×35	W18×35	-	-	-	-	-	-	-
	18	W8x18	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-
	20	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-	-
26	6	W6x9	W6x9	W6x12	W6x15	W8x18	W10x22	W10x22	W10x22	W10x22	W12x26	W14x30	W16x31	W18x40	-	-
	8	W6x9	W6x12	W6x15	W8x18	W8x18	W10x22	W10x22	W10x22	W10x22	W16x31	W18x35	W21x44	-	-	-
	10	W6x12	W6x15	W8x18	W8x18	W8x18	W10x22	W10x26	W12x26	W14x30	W18x35	W21x44	-	-	-	-
	12	W6x15	W8x18	W8x18	W8x21	W10x22	W10x26	W12x26	W14x30	W18x35	W21x44	-	-	-	-	-
	14	W8x18	W8x18	W8x21	W10x22	W10x26	W12x26	W14×30	W18x35	-	-	-	-	-	-	-
	16	W8x18	W8x21	W10x22	W10x26	W12x26	W14x30	W18x35	-	-	-	-	-	-	-	-
	18	W8x21	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-
	20	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-	-
28	6	W6x9	W6x12	W6x15	W6x15	W8x18	W10x22	W10x22	W10x22	W12x26	W14x30	W16x31	W18x35	W21×44	-	-
	8	W6x12	W6x15	W6x15	W8x18	W8x18	W10x22	W10x22	W10x22	W12x26	W18x35	W21x44	-	-	-	-
	10	W6x12	W6x15	W8x18	W8x18	W8x21	W10x22	W10x26	W14×30	W16x31	W18×40	W21x44	-	-	-	-
	12	W6x15	W8x18	W8x21	W10x22	W10x22	W10x26	W14x30	W16x31	W21×44	-	-	-	-	-	-
	14	W8x18	W8x18	W10x22	W10x22	W10x26	W14x30	W16x31	-	-	-	-	-	-	-	-
	16	W8x18	W8x21	W10x22	W10x26	W12x26	W18x35	-	-	-	-	-	-	-	-	-
	18	W8x21	W10x22	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-	-
	20	W8x21	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-	-	-

MARYLAND STATE HIGHWAY ADMINISTRATION

$\begin{gathered} W \\ (F E E T) \end{gathered}$	$\begin{aligned} & \text { L MAX } \\ & \text { (FEET) } \end{aligned}$	HEIGHT 'H' IN FEET														
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	6	W6x9	W6x12	W6x15	W8x18	W8x18	W10x22	W10x22	W10x22	W12x26	W14x30	W16x31	W21x44	W21×44	-	-
	8	W6x12	W6x15	W8x18	W8x18	W8x18	W10x22	W10x22	W10x22	W12x26	W18x35	W21x44	-	-	-	-
	10	W6x15	W6x15	W8x18	W8x18	W8x21	W10x26	W12x26	W16x31	W18x35	W21x44	-	-	-	-	-
	12	W6x15	W8x18	W8x21	W10x22	W10x26	W12x26	W16x31	W18x35	W21×44	-	-	-	-	-	-
	14	W8x18	W8x21	W10x22	W10x26	W12x26	W14x30	W18x35	-	-	-	-	-	-	-	-
	16	W8x18	W8x21	W10x26	W10x26	W14×30	W18x35	-	-	-	-	-	-	-	-	-
	18	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-	-
	20	W10x22	W10x26	W14×30	-	-	-	-	-	-	-	-	-	-	-	-

MARYLAND STATE HIGHWAY ADMINISTRATION
Office of Traffic and Safety Traffic Engineering Design Division Traffic Control Devices Design Manual 100 MPH
10 Year Recurrence

			$L_{\text {max }}$			Non-Breakaway Steel Supports Three Post Selection Chart (A36 Steel)					Office of Traffic and Safety Traffic Engineering Design Division Traffic Control Devices Design Manual $100 \text { MPH }$ 10 Year Recurrence					
		HEIGHT 'H' IN FEET														
(FEET)	(FEET)	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
6	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	6	W6x9	W6x12	W6x12	W6x12	W6x12	-	-								
	8	W6x9	W6x12	W6x15	-	-	-	-								
	10	W6x9	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	-	-	-	-
	12	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-
	14	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-
	16	W6x9	W6x12	W6x12	W6x12	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-
	18	W6x12	W6x12	W6x12	W6x15	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-
	20	W6x12	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-
10	6	W6x9	W6x12	W6x12	W6x12	-	-	-	-							
	8	W6x9	W6x12	-	-	-	-	-	-							
	10	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-
	12	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-	-
	14	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-	-	-
	16	W6x9	W6x12	W6x12	W6x15	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-
	18	W6x12	W6x12	W6x15	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-
	20	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-
12	6	W6x9	W6x12	W6x12	W6x12	-	-	-	-	-						
	8	W6x9	W6x12	W6x12	-	-	-	-	-	-						
	10	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x15	W6x15	-	-	-	-	-	-	-
	12	W6x9	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-	-	-
	14	W6x9	W6x12	W6x12	W6x12	W6x15	W6x15	-	$-$	$-$	-	$-$	-	-	-	-
	16	W6x12	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-
	18	W6x12	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	$-$
	20	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-

MARYLAND STATE HIGHWAY ADMINISTRATION
$\begin{array}{rc} & \begin{array}{r}\text { Office of Traffic and Safety }\end{array} \\ \text { Traffic Engineering Design Division } \\ \text { Traffic Control Devices Design Manual }\end{array}$
Three Post Selection Chart (A36 Steel)
HEIGHT 'H' IN FEET

			Lmax			Non-Breakaway Steel Supports Three Post Selection Chart (A36 Steel)						Office of Traffic and Safety Traffic Engineering Design Division Traffic Control Devices Design Manual $100 \text { MPH }$ 10 Year Recurrence				
			HEIGHT 'H' IN FEET													
(FEET)	(FEET)	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
14	6	W6x9	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x12	-	-	-	.		.
	8	W6x9	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	-	-	-	-	-	-
	10	W6x9	W6x9	W6x9	W6x9	W6x12	W6x15	W6x15	-	-	-	-	-	-	-	-
	12	W6x9	W6x9	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-	-	-	-
	14	W6x9	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-
	16	W6x12	W6x12	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-
	18	W6x12	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-
	20	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-	-
16	6	W6x9	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W8x18	W8×18	W10x22	W10x22	W10x22	-	-
	8	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	W8x18	W10x22	W10x22	W10x22	W10×22	-	-
	10	W6x9	W6x9	W6x9	W6x9	W6x12	W6x15	W8x18	W8×18	W8x18	W10x22	W10x22	W10x22	W10x22	-	-
	12	W6x9	W6x12	W6x12	W6x15	W6x15	W8x18	W8x18	W8×18	W8x18	W10x22	W10x22	W10x22	W10x22	-	.
	14	W6x12	W6x12	W6x15	W6x15	W8x18	W8x18	W8x18	W8×18	W8*21	-	-	-	-	-	-
	16	W6x12	W6x15	W6x15	W8x18	W8×18	W8x18	-	-	-	-	-	-	-	-	-
	18	W6x15	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-
	20	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-	-
18	6	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	W8x18	W8x21	W10x22	W10x22	W10x22	-	-
	8	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W6x15	W6x15	W8×18	W10x22	W10x22	W10x22	-	-	-
	10	W6x9	W6x9	W6x9	W6x12	W6x12	W8x18	W8x18	W8×18	W10x22	W10x22	W10x22	W10x22	-	-	-
	12	W6x9	W6x12	W6x12	W6x15	W8×18	W8×18	W8x18	W8×18	W10x22	W10x22	W10x22	W10x22	-	-	-
	14	W6x12	W6x12	W6x15	W8x18	W8x18	W8x18	W8x18	W8x21	-	-	-	-	-	-	-
	16	W6x12	W6x15	W6x15	W8×18	W8×18	-	-	-	-	-	-	-	-	-	-
	18	W6x15	W6x15	-	-	-		-	-	-	-	-	-	-	-	-
	20	W6x15	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	6	W6x9	W6x9	W6x9	W6x9	W6x9	W6x12	W6x12	W8×18	W8x18	W10x22	W10x22	W10x22	W10x22	-	-
	8	W6x9	W6x9	W6x9	W6x9	W6x12	W6x15	W6x15	W8×18	W8×18	W10x22	W10x22	W10x22	-	-	-
	10	W6x9	W6x9	W6x9	W6x12	W6x15	W8x18	W8x18	W8x21	W10x22	W10x22	W10x22	W10x22	-	-	.
	12	W6x9	W6x12	W6x15	W6x15	W8×18	W8x18	W8x18	W8×21	W10x22	W10x22	W10x22	-	-	-	-
	14	W6x12	W6x15	W6x15	W8×18	W8x18	W8×18	W8*21	-	-	-	-	-	-	-	-
	16	W6x15	W6x15	W8×18	W8×18	W8x18	-	-	-	-	-	-	-	-	-	-
	18	W6x15	W6x15	-	-	-	-	-	-	-	-	-	-	-	-	-
	20	W6x15	-	-	-	-	-	-	-	-	-	-	-	-	-	-

MARYLAND STATE HIGHWAY ADMINISTRATION
$\begin{array}{rc} & \begin{array}{r}\text { Office of Traffic and Safety } \\ \text { Traffic Engineering Design Division }\end{array} \\ \text { Non-Breakaway Steel Supports } & \mathbf{1 0 0} \mathbf{~ M P H}\end{array}$
Three Post Selection Chart (A36 Steel)
HEIGHT 'H' IN FEET
10 Year Recurrence

n
0
0
0
\vdots
3
3
. . .

\ddagger
\searrow
\times
$\underset{\lambda}{2}$
3

7	8
3	3

4

$\stackrel{-}{-}$

n
0
0
0
3
3

N
0
0
0

3
3
..

0
y_{1}
0
3
3

두

$\begin{array}{ll}0 \\ 0 \\ 0 \\ 3 \\ 3 & \\ 3\end{array}$
 n
0
0
0
1
3
3

- $\begin{aligned} & 0 \\ & 0\end{aligned}$

14

N
3

0
2
4
4
3

n
0
0
0
3
3

' '
s- \forall x!puədd \forall

$\begin{gathered} W \\ (F E E T) \end{gathered}$	L MAX (FEET)	HEIGHT 'H' IN FEET														
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
30	6	W6x9	W6x9	W6x9	W6x12	W6x15	W8x18	W8x21	W10x22	W10x22	W10x22	W12x26	W12x26	W14x30	W21x44	-
	8	W6x9	W6x9	W6x12	W6x15	W6x15	W8x18	W8x21	W10x22	W10x22	W12x26	W14×30	W16x31	W18x35	W21x44	-
	10	W6x9	W6x12	W6x15	W6x15	W8×18	W10x22	W10x22	W10x22	W10x26	W12x26	W14×30	W16x31	W18x35	W21x44	-
	12	W6x12	W6x15	W8x18	W8x18	W8x21	W10x22	W10x22	W10x26	W12x26	W14×30	W16x31	W18x35	W21x44	-	-
	14	W6x15	W8x18	W8x18	W8x21	W10x22	W10x22	W10x26	W12x26	W14×30	W18×35	W18×35	-	-	-	-
	16	W8x18	W8x18	W8x21	W8x21	W10x22	W10x26	W12x26	W14×30	W18×35	-	-	-	-	-	-
	18	W8x18	W8x21	W8x21	W10x26	W10x26	W10x26	W14×30	-	-	-	-	-	-	-	-
	20	W8x18	W8x21	W10x26	W10x26	W14x30	-	-	-	-	-	-	-	-	-	-

[^0]: Based on 65 MPH Wind Speed.

