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Chapter 1 
Introduction 

 
1.1 RESEARCH BACKGROUND 

To effectively contend with day-to-day non-recurrent congestion due to traffic incidents, 
the Maryland Department of Transportation State Highway Administration (MDOT SHA) has 
worked with the research team from the Traffic Safety and Operations Laboratory over the past 
three years to develop a traffic management decision support tool, known as the Incident 
Duration and Impacts Prediction (IDIP) system for Freeway Incident Traffic Management 
(FITM) plan deployment. As with most technological products, the development process for an 
innovative IDIP system started from its initial phase of concept proof with I-95, followed by the 
prototype construction in Phase II, based on Coordinated Highways Action Response Team’s 
(CHART) incident records for I-495, I-695, I-70, and US 29. Promising results from the first two 
phases offer support for the IDIP system’s development to progress to its third phase of 
refinement, generalization, and deployment. 

  
Conceivably, for best use by CHART’s response teams to minimize the incident impacts 

and the resulting traffic delay during their daily operations, it is expected that the proposed IDIP 
system in the Phase 3 development can expand its prediction function to all highway segments 
covered by CHART and offer a reliable estimate of the resulting queues’ spatial evolution 
pattern during the predicted incident clearance period. Since the information on traffic queue 
distance due to incidents and its impacts on the neighboring surface streets is critical to the 
selection of the best traffic management strategy, the IDIP system in this phase has also been 
designed with a supplemental function to approximate the freeway volume detouring to the local 
routes up to the full recovery of the roadway capacity. 

 
With all essential functions developed in this phase for IDIP, CHART’s incident response 

team can conveniently estimate the required clearance duration for a detected incident, reliably 
project its maximum traffic queue distance during the response operations, and project the likely 
distribution of the freeway traffic detouring to the local streets during the same period. Note that 
IDIP’s functions are developed with all field operational and information constraints in mind so 
that they can provide reliable and robust estimation for freeway segments with insufficient or 
unreliable surveillance systems. 

 
1.2 RESEARCH OBJECTIVE  

The primary objective of this study is to finalize the IDIP system’s development so that 
CHART can reliably project the impacts of a detected incident, from detection to clearance, on 
its target freeway and neighboring local networks. Such an IDIP system, designed to function 
under an insufficient traffic surveillance system, is comprised of the following three models: 

• A generalized incident duration prediction system for the entire network covered by 
CHART; 

• A traffic queue evolution model for estimating the maximum queue distance during the 
incident clearance period; and 

• A robust function for estimating the detouring traffic volumes and their impacts on the 
neighboring local network during the incident clearance period. 
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A graphical illustration of the proposed IDIP system and the interrelations between its 
three key modules is shown in Figure 1-1. The output of an online operated IDIP system can 
offer all information needed for CHART to best implement the traffic control/management 
strategies during the incident clearance period and convey the traffic conditions in a timely 
manner to both drivers and the general public via all available channels. 

IDIP System

Sensor 
data

Off-line 
data

Probe/patrolling 
reports

Incident duration
I-95
I-495
I-695
I-70
US29

CHART
General 
module

ATIS Module

Incident impact

Traffic queue evolution 
prediction module

Traffic 
management 

module

Update remaining 
incident clearance time

Field response 
team reports

Detour rate
Detour rate 

estimation/prediction 
module

Incident duration
Incident impact distance

Detour rate

Output
Feedback

 
FIGURE 1-1: Graphical Illustration of the Incident Duration and Impact Prediction (IDIP) System 

 
1.3 REPORT ORGANIZATION 

Based on the above research objective and scope, the research team has organized all 
research results into six chapters. The principal results discussed in each chapter are summarized 
below: 

 
Chapter 2 provides a comprehensive review of available studies related to each of the 

three principal models for the IDIP system, including various state-of-the-art and state-of-the-
practice systems for estimating the clearance time of a detected incident, its time-varying queue 
distance due to roadway capacity reduction, and the impacts to neighboring arterials incurred by 
the detouring traffic. As the focus of this project is to produce a robust tool for incident response 
and management under insufficient traffic surveillance environments or in highway networks 
without reliable detection function, an in-depth investigation of all existing systems’ applicability 
on Maryland’s highways, having only sparsely distributed traffic sensors, constitutes the core of 
this chapter. The enhancement needs for SHA to operate the incident response and management 
at the desirable level of efficiency within the budget constraints are also discussed in this chapter. 

 
Chapter 3 presents the innovative methodology to generalize the knowledge-based rules 

for incident duration prediction, developed for I-495, I-695, I-70, and US 29, for all major 
highways managed by CHART but with insufficient incident data for calibrating their own 



 
 

3 
 

customized prediction models. The core modeling structure of this system, featuring its 
innovative circumvention of the demanding development efforts and extensive data needs for 
calibration, is described first in this chapter, followed by a step-by-step discussion of the 
automated process for constructing a similar rule-based prediction system for any other highways 
by intelligently transferring from existing Incident Duration Prediction Model’s (IDPM) 
embedded rules. The effectiveness of the developed knowledge-transferability method has been 
evaluated with multi-year incident records from other highways managed by CHART. Promising 
evaluation results along with some recommendations for further enhancements to cope with all 
data deficiency scenarios are discussed in detail in this chapter. 

 
Chapter 4 reports the models developed for estimating the incident queue impacts on 

roadway traffic in real-time with and without a reliable traffic surveillance system, including its 
development process, innovative alternatives to cope with insufficient information from traffic 
detectors, and the performance evaluation results from both simulation experiments and field 
data. This chapter starts with a discussion of how to construct a dataset from all available 
archived data sources that contain the traffic queue distance under different lane-blockage 
incidents at different volume levels. A prediction model, based on classical traffic flow theory 
and the assumption of having reliable traffic sensors, is then described for estimating the time-
varying traffic impact distance during the duration of incident clearance. This is followed by an 
extensive review of limitations and constraints often encountered by incident response teams in 
daily field operations. The remaining of this chapter presents the set of alternative models 
developed to provide the estimated traffic queues during the incident response period under the 
constraints of insufficient detection data in real-time operations. Results of extensive evaluations 
with both simulation experiments and field data are also reported in this chapter. 

 
Chapter 5 focuses on discussing the methodology and the produced model for the traffic 

control center to estimate the distribution of freeway traffic over the available detouring routes 
during the incident clearance operations, given the identified incident nature, estimated clearance 
duration, and the computed maximum queue distance with and without reliable real-time traffic 
surveillance data. Starting with a brief review of available models for estimating the detour rate 
under a reliable traffic surveillance environment, this chapter devotes its first two sections to 
discussing the challenges in developing a robust model for estimating time-varying detouring 
traffic via off-ramps during incident clearance periods when such real-time traffic detection data 
is not available in practice. The methodology and calibration process of an innovative model, 
developed with the needs of incident management and the lack of traffic detection data in mind, 
constitute the core of this chapter.  Performance evaluation results with respect to the developed 
model from extensive simulation experiments and field-collected data are also documented in 
this chapter. 

 
Chapter 6 serves to compile all major research findings from this study, including major 

challenges encountered in developing each of the system’s three principal modules and their key 
features, as well as the main strengths making the system best applicable for use in practice. 
Primary areas for future system enhancements when more real-time and/or archived data are 
available, along with the description of training needs as well as potential system deployment 
issues are also discussed in this chapter. 
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Chapter 2 
System Structure and Literature Review 

 
2.1 SYSTEM STRUCTURE 

To mitigate traffic impacts due to incidents, most U.S. highway agencies have established 
Traffic Incident Management (TIM) programs to support detection, response, and clearance 
operations. Efficient execution of such vital series tasks can minimize not only the resulting 
traffic queues on the roadway segment, but also the likelihood of incurring secondary incidents 
by lane-changing vehicles.  Hence, a state-of-the-art TIM program, as shown in Figure 2-1, is 
expected to have the following essential functions to support different stages of the incident 
response and operations:  

• Provide an estimate of the required incident clearance duration at Stage 1 of the incident 
detection and response operations;  

• Offer the approximate time-varying traffic queues during Stage 2 of incident clearance 
operations and impact estimate; and 

• Assess the potential incident impacts on neighboring surface streets during Stage 3 of 
incident clearance and deployment of traffic management strategies. 
 

To ensure that the development of robust models and algorithms for the above three 
principal functions is grounded in the accomplishments of related state-of-the-art works, this 
study has conducted an extensive literature review and summarized some of those major findings 
along with critical areas for enhancements in the remaining sections. 

 
FIGURE 2-1: Structure of a Traffic Incident Management (TIM) Support System 
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2.2 PREDICTION OF THE INCIDENT DURATION 
Over the past decades, transportation researchers have devoted significant efforts to 

developing incident duration prediction models with a variety of techniques, including 
continuous statistical models (Farradyne, 2000; Golob et al., 1987; Giuliano, 1989; Khattak et 
al., 1994; Garib et al., 1997; El-Basyouny and Sayed, 2006; Qi and Teng, 2008; Chung, 2010; 
Khattak et al., 2012; Wang et al., 2013; Wang et al., 2013; Hojati et al., 2013; Li and Shang, 
2014; Zou et al., 2016; Khattak et al., 2016; Li et al., 2017; Wang et al., 2018; Laman et al., 
2018; Hong et al., 2019), machine learning approaches (Zhang et al., 2021; Wang et al., 2005; 
Wei and Lee, 2007; Valenti et al., 2010; Guan et al., 2010; Wu et al., 2011; Vlahogianni et al., 
2013; Park et al., 2016), discrete/classification methods (Park et al., 2017; Ozbay and Kachroo, 
1999; Ozbay and Noyan, 2006; Boyles et al., 2007; Zhao et al., 2009; Chang and Chang, 2013), 
and hybrid modeling techniques (Ma et al., 2017; Lin et al., 2004; Kim and Chang, 2012; Ji et 
al., 2011; He et al., 2013; Li et al., 2015; Zhu et al., 2017; Pettet et al., 2017; Won et al., 2018; 
Won, 2019). 

 
As for the statistical models, a regression model was developed by Garib et al. (1997) to 

determine the duration of incidents using approximately 2,000 cases. The study revealed several 
significant factors that affect incident duration, including the number of lanes, the number of 
vehicles involved, the involvement of trucks, the time of day, the response time of the police, and 
weather conditions. Using roughly 16,000 incident cases, Khattak et al. (2012) produced a 
comparable model using Ordinary Least Squares (OLS) regression. Their findings indicated an 
achievement of approximately 37% for the overall mean absolute percentage error (MAPE) in 
incidents with durations ranging from 10 to 120 minutes. Chung (2010) developed a log-logit 
accelerated failure time (AFT) metric model to forecast incident duration on Korean Freeway 
Systems. The study findings revealed a significant relationship between the duration of incidents 
and several key factors (e.g., number of vehicles involved, number of injuries, accident types, 
location, etc.). With the same focus, Hojati et al. (2013) investigated the influence of several 
factors on the duration of various types of incidents using data on the Australian Freeway 
Network. Several variables have been identified to significantly affect incident duration, 
including incident characteristics, location, time of day, and traffic characteristics. Li and Shang 
(2014) used a series of parametric AFT models and a flexible parametric AFT model to 
investigate the impact of various factors on different types of incidents. The study found that the 
general AFT model may not be sufficiently flexible to represent the hazard function adequately, 
thus could not capture the underlying shape exhibited from the incident duration data due to the 
diverse distribution of traffic incident durations. Besides, semi-parametric models may not yield 
the expected performance and often produce large errors for incidents of long duration. Zou et al. 
(2016) used the finite mixture model to investigate incident clearance time. They applied the g-
component mixture model to analyze incident clearance duration using data from freeway 
segments in Seattle. Their study found that the proposed mixture model better described the 
survival and hazard probabilities of incident duration and provided more accurate predictions 
than the AFT model. 

 
In recent years, the method of machine learning has also been adopted in literature to 

enhance the estimation of incident duration. For example, Wang et al. (2005) compared the 
performance of two incident duration models calibrated with fuzzy logic (FL) and artificial 
neural network (ANN), respectively, based on incident data from the Road Network Master 
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Database in the U.K. They found that both methods have difficulty in identifying outliers. Wei 
and Lee (2007) developed two ANN models to forecast the incident duration in a sequential 
manner. The first model predicted the incident duration at the time of notification, while the 
second model provided updates for the incident duration in the following periods. The study 
concluded that the developed model performed well in fitting the actual incident duration, and 
the ANN model was effective in smoothing the data noise. Based on the data from the 
Netherlands Ministry of Communication, Wu et al. (2011) developed an incident duration model 
using the Support Vector Regression (SVR) approach to address challenges related to small 
sample sizes, nonlinearity, and high-dimensional features. 

 
Along the line of applying discrete/classification methods for incident duration 

estimation, Ozbay and Kachroo (1999) used the decision tree model to predict incident duration 
by analyzing incident data from Northern Virginia. They first applied linear regression, and then 
developed a hybrid decision tree for incidents that did not follow lognormal or log-logistic 
distributions. Ozbay and Noyan (2006) further developed a dynamic incident duration estimation 
tree using Bayesian Networks (BNs). They highlighted the advantages of using BNs to model 
and analyze incident duration data because of their ability to consider the stochastic nature of the 
data. Boyles et al. (2007) used the naive Bayesian classifier to predict the incident duration, 
which can handle incomplete information received at different times. The model, calibrated with 
incident data from the Georgia Department of Transportation, showed better prediction 
performance than the standard linear regression model. The Gradient Boosting Decision Tree 
(GBDT) method has been adopted by Ma et al. (2017) to address nonlinearity and imbalance 
issues in incident data with different types of variables. The study results suggested that the 
GBDT method is superior to existing algorithms, including random forest, artificial neural 
network, and support vector machine, for predicting incidents with very short and very long 
durations. 

 
Another category of studies for estimating incident duration is to apply multiple modeling 

methods and then develop a hybrid model to enhance the estimation results. For example, Lin et 
al. (2004) developed a model to estimate incident duration by integrating the discrete choice 
model and the rule-based method. They applied the ordered probit model to incidents with less 
than 60 minutes duration. For incidents exceeding 60 minutes, they used a rule-based model to 
capture complex interactions between the contributing factors and the incident duration. Kim and 
Kim and Chang (2012) developed a model for predicting incident duration by integrating the 
Rule-Based Tree Model (RBTM) with the Multinomial Logit Model (MNL) or Naive Bayesian 
Classifier (NBC) as supplemental models. The results showed that the developed model 
performed well for most incidents, except for those lasting between 60-120 minutes and 240-300 
minutes. He et al. (2013) proposed a Hybrid Tree-based Quantile Regression Model that 
combines the strengths of decision tree and quantile regression methods. They applied the 
unbiased recursive partitioning algorithm to develop the decision tree. The quantile regression 
method was then applied to each terminal node of the tree.  

 
Despite the significant progress made by the traffic community in incident duration 

estimation, field implementation of such an imperative system to contend with non-recurrent 
congestion remains in the infancy stage. This is due partly to the fact that a large number of 
factors are critical to an incident’s clearance time, but the associated data are difficult to collect 
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at a desirable level of accuracy for system development. Moreover, the complex nature (e.g., 
discrete, continuous, or binary) of those critically associated factors and their distributions are 
inconsistent with the underlying assumptions of many statistical-based methods reported in the 
literature, thus are mostly difficult to yield robust results for use in practice. 
 
2.3 PREDICTION OF THE INCIDENT QUEUE LENGTH 

Queue length prediction has been a widely addressed subject since it is essential 
information for estimating traffic delays and for the design of relevant traffic control strategies. 
Most such studies in literature were developed for use under either recurring or non-recurring 
congestion systems. A large body of works in the literature (Newell, 1968a; Newell, 1968b, 
Newell, 1068c, Newell, 1982, Hegyi et al., 2005, Carlson et al., 2010; Yang et al., 2016; Cheng 
et al., 2022) for recurrent congestion applied the input-output based method for various 
applications. For example, Newell (1968a, 1968b, 1968c, 1982) focused on modeling fluid-based 
queues in traffic systems that experience time-dependent arrival rates, using linear or quadratic 
functions. Yang et al. (2016) developed a mesoscopic simulation model to estimate queue 
lengths under different demand-to-capacity ratio scenarios, using a similar input-output method. 
Along the same line, Cheng et al. (2022) proposed a spatial queue model for oversaturated traffic 
systems with time-dependent arrival rates. Their approach involved using polynomial functional 
approximation to describe the dynamics of oversaturated traffic conditions, and mapping various 
measurements such as available flow rate, density, and end-to-end travel time to the queue 
evolution process. 

 
Another common method for queue estimation under recurring congestion is shockwave 

analysis (Mehran and Nakamura, 2009; Hadiuzzaman and Qiu, 2013; Cao et al., 2015; Vickrey, 
1969; Kuwahara and Akamatsu, 1997; Nie and Zhang, 2005; Ban et al., 2012; Han et al., 2013a; 
Han et al., 2013b. For example, Mehran and Nakamura (2009) employed the shockwave analysis 
to compute the number of queued vehicles. Nie and Zhang (2005) and Ban et al. (2012) applied 
the same method in their studies for computing the point-queue length (1969) for freeway traffic 
flows. To address the inevitable capacity, drop under such queue formation scenarios, 
Hadiuzzaman and Qiu (2013) proposed an enhanced model with the same shockwave 
methodology for freeway segments under constant flow rates. Cao et al. (2015) further extended 
the macroscopic shockwave model to a time-space discrete functional form, allowing the 
discharge flow rate to be time-dependent and the resulting queues to vary over time as 
manifested in field observations. 

 
As for predicting traffic queues under non-recurring congestion, the input-output based 

method was also one of the widely adopted methods (Lawson et al., 1997; Erera et al., 1998; 
Jiang, 2001; Sheu et al., 2001; Cheevarunothai et al., 2007; Lee et al., 2008; Ullman and Dudek, 
2003). For instance, Lawson et al. (1997) and Erera et al. (1998) proposed an input-output 
diagram approach for calculating the spatial queue length. Sheu et al. (2001) presented a 
discrete-time nonlinear stochastic model for real-time prediction of queue length using Kalman 
filtering. Ullman et al. (2003) developed a model that uses fluid-flow analogies to represent 
interactions between traffic queuing on and diversion from the freeway. Their model provides a 
rational representation of how traffic queues, upstream of temporary work zones, evolve from 
propagation to stabilization in urban areas. In addition, Du et al. (2017) and Lee et al. (2018) 
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applied ANNs to estimate work zone impacts and incident queue length. Ghosh et al. (2017) 
used regression analysis to predict the queue length for incidents on expressways in Singapore.  

 
 Aiming to compare the performance of these two commonly used methods (i.e., input-
output and shockwave-based methods) for predicting freeway traffic queues, Nem and Drew 
(1998) indicated that the input-output based method tends to underestimate the overall delays 
compared with the shock-wave analysis. However, Hurdle and Son (2001) pointed out that 
despite the discrepancy in defining queue length, these two methods produce identical estimates 
of travel time and delay. Similarly, Cao et al. (2014) noted that both methods are compatible and 
capable of providing accurate estimates of real-time queue length upstream of a bottleneck. 
 
 As for the queue prediction at a signalized intersection, Akçelik (1997) proposed a 
method for such needs by modifying the parameters of the Highway Capacity Manual Queue 
Estimation Model. Mirchandani and Head (2001) and Sharma et al. (2007) proposed similar 
methods for approximating intersection queues based on the predicted vehicle arrival and release 
rates, using the conventional input-output method. Geroliminis and Skabardonis (2005) and Li et 
al. (2018) applied the Lighthill-Whitham-Richards (LWR) shockwave theory Lighthill and 
Whitham, 1955; Richards, 1956) to predict the signalized queue length. 
 

In brief, despite the tremendous efforts made in predicting traffic queues using various 
approaches, the complex and mutually dependent relations between the queue propagation speed 
and arriving flow rate remain better captured in most existing studies, because drivers, when 
approaching the bottleneck and perceiving the queue formation in real-time, may slow down 
their speed. Furthermore, the discharge flow rate under lane-blockage scenarios may vary by 
which and how many lanes are being blocked and consequently result in different lane-changing 
and car-following behaviors to form the queue pattern. Besides, most existing studies are 
grounded in the assumption of having extensively deployed traffic sensors with reliable data 
quality which, however, often does not hold in most freeway incident response scenarios, thus 
rendering most existing models not applicable for use in practice.   
 
2.4 ESTIMATION OF THE DETOURING RATE DURING FREEWAY TRAFFIC 
BLOCKAGE 

Detouring rate estimation during recurring and non-recurrent congestions has been 
extensively investigated for off-line and real-time applications in the literature. Aiming at 
estimating the detouring rates with historical data, most existing methods for off-line 
applications belong to either stated preference or revealed preference from field observations.  

 
The former category of methods often adopts surveys or driving simulators to collect 

travelers’ stated preferences and then estimates the percentages of travelers who choose to detour 
under various scenarios of information availability. For example, Peeta et al. (2000) examined 
the impact of a Dynamic Message Sign’s (DMS) contents and other pertinent factors on the 
resulting detouring rates, reporting that 53% of drivers would opt for an alternative route if the 
expected delay on their current route exceeds 10 minutes. Their model has further been adopted 
by Peeta and Gedela (2001) to construct a DMS control heuristic framework.  

 



 
 

9 
 

With extensive surveys, Huchingson and Dudek (1979) found that a driver’s detour 
decision depends mainly on the displayed time savings, much less on all other factors such as 
incident type and traffic conditions. Khattak et al. (1993) reported some scenarios during which 
drivers would be more likely to select a detour route.  Examples of such scenarios include when 
the delay on their commuting routes is expected to increase due to incidents; the delay condition 
was observed directly versus received from the radio; or whether drivers are heading to work or 
home.  

 
Along the same line, Kattan et al. (2010) adopted a latent choice model to further identify 

some hidden factors that may critically affect a driver’s detour decision, such as prior driving 
experience, familiarity with alternative routes, trip purpose, trip time, trip length, and 
complementary information sources (e.g., the radio). Al-Deek et al. (2009) employed a discrete 
logit model to estimate diversion behaviors on toll roads in Central Florida, based on variables 
such as travel time, delay, information source, network familiarity, and specific trip 
characteristics. Based on stated preference data collected from the driving simulator, Xiong et al. 
(2016) created a diversion behavior model using naïve Bayes rules. A relatively comprehensive 
detour rate study with stated preference is available in the work by Abdel-Aty and Abdalla 
(2004) who collected drivers’ responses from driving simulators and applied the maximum 
likelihood estimation to approximate the detouring rate, taking into account both pre-trip and en-
route decisions with or without advice to divert.  

 
Despite the extensive studies with various stated preference methods, most of such 

estimated diversion percentages were found to be lower than those obtained in the second 
category of studies based on revealed preference surveys and traffic measurements. For instance, 
Chatterjee and MacDonald (2004) conducted a comprehensive survey across six European 
countries to assess the impact of DMS on traffic diversion. Their results indicate that the 
diversion rates were found to be between zero to 7% for incident messages and zero to 35% for 
route guidance information. Using data from Bluetooth detectors, a study conducted in Maryland 
(Haghani et al., 2013) revealed a diversion rate within the range of 5% to 18%. Foo and 
Abdulhai (2006) computed the diversion rate from traffic detector data after implementing DMS 
for sharing traffic conditions on Highway 401 in Toronto, Ontario, Canada, and found the 
average to be around 5.55%. Hadi et al. (2013) concluded that the actual detouring rate may vary 
between 10% to 35%, depending on the number of blocked and total lanes. 

 
Note that unlike offline applications, most works for real-time detouring rate estimation 

need to collect real-time traffic data to further enhance the estimation accuracy and to account 
for day-to-day traffic evolution and complex dynamics, especially during non-recurrent 
congestion. For example, Essien et al. (2021) presented a traffic prediction model using Long-
Short-Term Memory (LSTM), integrated traffic data, and their patterns reported in social media. 
Some studies along this line rely on the timely acquisition of traffic volume information and then 
perform the estimation by assessing the instantaneous inflow and outflow rates during incidents 
(He et al., 2013; He et al., 2016) or utilizing the cumulative statistics to compare the volume on a 
typical day with the volume during the incident (Hadi et al., 2013). With the same assumption on 
information availability for all entering volumes, Sadek et al. (1998, 1999) have developed an 
automated traffic routing decision support system using various artificial intelligence techniques. 
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In summary, despite the significant contributions of existing studies on estimating 
detouring rates during congested traffic scenarios, how to effectively update such estimates with 
real-time information to reflect the local and real-time traffic conditions, especially during 
incident scenarios, remains a challenge to the traffic community. Some studies that can take 
advantage of real-time data usually rely on the widely deployed traffic sensors that can provide 
reliable traffic data at the desirable quality and precision. However, such desirable traffic 
surveillance environments do not commonly exist in most existing highway networks and in 
most states, due to various constraints such as deployment costs, technical limitations, and 
various maintenance as well as operational issues. Moreover, most scarcely deployed freeway 
detectors are distributed on either mainline segments and/or on-ramps, less likely at off-ramps 
for computing the detour flow rate. Hence, to obtain accurate time-varying estimates of the 
detouring rates, it is critical that any proposed method for potential use in practice ought not to 
rely on the availability of traffic sensors at either the off-ramps or upstream segment of the 
incident location.  
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Chapter 3 
Extending the I-95 Rule-based Incident Duration System with an 

Automated Knowledge Transferability Model 
 
3.1 RESEARCH BACKGROUND 

It is well recognized that traffic incidents can result in a roadway’s capacity reduction and 
reliability degradation, and significant delays for commuters. Over the past several decades, 
many U.S. highway agencies have established a Traffic Incident Management (TIM) system to 
help mitigate such impacts and restore normal traffic conditions. A TIM system typically 
consists of a coordinated multi-disciplinary process to detect, respond to, and clear traffic 
incidents. It is expected that such a system can effectively reduce the clearance duration of 
detected incidents and reduce the resulting impacts on traffic delay and safety. To do so, a TIM 
system first needs a reliable and robust model to predict the required duration for incident 
clearance operations, and then to assess its time-varying traffic queues as well as resulting 
delays, because such information is essential for determining the proper control strategies and the 
responsive traffic management tasks.  

 
As presented in Chapter 2, despite the significant progress made by the traffic community 

on this subject, the implementation of such an imperative system to contend with non-recurrent 
congestion remains in the infancy stage. This is due partly to many factors (see Table 3-1) that 
are critical to an incident’s clearance time, but difficult to collect at a desirable level of accuracy 
for system development. Moreover, the complex nature (e.g., discrete, continuous, or binary) of 
those critically associated factors and their distributions are inconsistent with the underlying 
assumptions of many statistical-based methods reported in the literature. In view of such 
constraints, Won et al. (2018) explored the methodology of integrating the expertise of field 
responders and extensive information from the incident records to calibrate a rule-based Incident 
Duration Prediction Model (IDPM). Their proposed knowledge-based model was first applied to 
Maryland I-95 and later extended to I-495 and I-695. 

 
Further extension of the flexible and robust method by Won et al. (2018) to other 

Maryland highways (such as I-70 and U.S. 29), however, inevitably encounters the challenges of 
insufficient incident records for calibration of prediction rules and demand of significant 
involvement of experienced incident-response operators. Hence, this chapter presents a 
Knowledge Transferability Analysis (KTA) model, intending to explore the potential of 
constructing a new IDPM by transferring some of those prediction rules from existing IDPMs, 
based on their effectiveness to the new target highway. With such a computerized and effective 
KTA model, traffic professionals need to apply the resource-demanding method by Won et al. 
(2018) only to the small set of incidents that exhibit unique patterns and demand local-specific 
incident response resources. 

 
The next section will provide a brief description of the knowledge-based IDPM by Won 

et al. (2018). This is followed by a detailed presentation of the proposed KTA method for new 
system construction. An application of the KTA to developing the IDPM for Maryland I-70 
constitutes the core of its following section. Concluding comments and future research tasks are 
summarized in the last section. 
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TABLE 3-1: Factors Associated with the Clearance Time of a Detected Incident 

Category Variables Classification 

Incident Type Incident type 
Collision with Fatality (CF), Collision with 

Personal injury (CPI), Collision with 
Property Damage (CPD) 

Time 

Hour indicator AM-peak, Day time, PM-peak, Night  
Weekend indicator Weekend, Weekday 
Holiday indicator Holiday, Non-Holiday 
Season indicator Spring, Summer, Fall, Winter 

Location 
Direction indicator Northbound, Southbound, Eastbound, 

Westbound 
Exit number indicator Exit 1, Exit 2, … 

Environmental 
Conditions 

Pavement condition indicator Dry, Wet, Snow-ice, Chemical wet 
Hazard material related Yes, No 

Operation Center Center indicator AOC, TOC3, TOC4, TOC5, SOC 

Lane Blockage 
Information 

# of blocked lanes 1, 2, 3, 4, … 
# of blocked shoulder lanes 0, 1, 2, 3, … 

# of blocked travel lanes 0, 1, 2, 3, … 
# of blocked auxiliary lanes 0, 1, 2, 3, … 

Travel lane blocked in tunnel Yes, No 
Travel lane blocked in toll Yes, No 

Involved Vehicle 
Information 

Vehicle status Jack-knifed, Over-turned, Lost-load 
# of total involved vehicles 1, 2, 3, 4, … 
# of involved passenger cars 0, 1, 2, 3, … 

# of involved trucks 0, 1, 2, 3, … 
# of involved motorcycles 0, 1, 2, 3, … 

Response Unit 
Information 

# of total response units 1, 2, 3, 4, … 
# of arrived CHART 0, 1, 2, 3, … 
# of arrived police 0, 1, 2, 3, … 

# of arrived fireboard 0, 1, 2, 3, … 
# of arrived medical service 0, 1, 2, 3, … 

# of arrived tow service 0, 1, 2, 3, … 
First responder CHART, Police, Fireboard, Medical, Tow 

 
3.2 DEVELOPMENT OF A KNOWLEDGE-BASED IDPM 

Figure 3-1 illustrates the development process proposed by Won et al. (2018), using the 
Association Rule Mining method (Agrawal et al., 1993; Hahsler et al., 2005) for rule generation 
and statistical tests to construct prediction rules for different types of incidents. 
   

 
 

FIGURE 3-1: Development Process of the Knowledge-Based IDPM (Won, 2019) 
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Incident Categorization 
Given the pre-processed incident dataset, all incident records from the target highway 

will be first classified into several subsets based on incident type and lane blockage information. 
For instance, all collisions resulting in lane closure, as shown in Figure 3-2, are typically divided 
into three categories: Collision with personal injury (CPI), collision with property damage 
(CPD), and collision with fatality (CF). Depending on the available incident records, one may 
further classify each of the three categories by the number of closed lanes. For instance, due to 
the small sample size and unique clearance duration pattern, all incidents in CF are grouped in 
one cluster. The incident records resulting in only shoulder lane blockage are not further 
decomposed because the clearance times for all such incidents distribute consistently within a 
relatively stable and short interval. 

 

FIGURE 3-2: Incident Categorization Based on the Incident Type and Lane Blockage Information 
 
Prediction Rules Mining Process 

After the initial categorization of available incident records, one can then proceed with 
the following procedures to construct a set of “IF-THEN” rules for the estimated clearance time 
for each of those finalized subsets of incidents: 
 
Collision with Personal Injury (CPI) and Collision with Property Damage (CPD) 

The incident data in those six subsets of CPI and CPD would be first classified into two 
classes of “< 30 minutes” and “≥ 30 minutes” by using the Association Rule Mining method. 
Then, the incident data classified in the class of “≥ 30 minutes” is further divided into two groups 
of “< 60 minutes” and “≥ 60 minutes” for searching other classification rules. With the same 
logic, one can then further decompose the incident data group of “≥ 60 minutes” into two 
clusters of “< 120 minutes” and “≥ 120 minutes.” Finally, based on the distribution of the 
incident clearance durations, three intervals of the estimated clearance duration corresponding to 
the confidence levels of 60%, 70%, and 80% can be produced from the sequential classification 
process. Figure 3-3 illustrates such a process by using CPI with two-lane blockage on I-95 from 
2012 to 2015 as an example. 
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FIGURE 3-3: An Example of the Sequential Classification Process (2) 
 
Collision with Fatality (CF)  

Notably, compared with CPD and CPI, nearly all highways, by nature, have many fewer 
incidents resulting in collision with fatality. In view of the very small sample size for CF, Won et 
al. (2018) suggested adopting a different search process for identifying robust rules to estimate 
their required clearance durations. A detailed illustration of such a process is available in their 
works (Won et al., 2018; Won, 2019). 

 
Figure 3-4 presents the application process of the developed IDPM-I-95 software, 

including its key input data, underlying classification and estimation structure, and the resulting 
outputs. Note that the system provides an interval-based, rather than a point-based estimate for a 
detected incident’s duration to accommodate the data quality and availability, which are often 
imperfectly collected during the emergency incident response process. Additionally, such a 
model was later extended to I-495 and I-695; all three developed models, as shown in Table 3-2, 
have produced the expected level of performance sufficient for use in daily incident response 
operations. 
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FIGURE 3-4: The Application Process of the Developed IDPM-I-95 Software (Won, 2019) 

 
TABLE 3-2: Performance of IDPMs for I-95, I-495, and I-695 by Incident Type and Blocked Lane 

Highway 
Collision with Travel Lane Blockage 

CPI 1 CPI 2 CPI 3+ CPD 1 CPD 2 CPD 3+ Total 

I-95 

(2012-2017) 

77.2%a 84.6% 78.8% 74.3% 80.5% 83.7% 77.1% 

(446/578) (203/240) (82/104) (795/1070) (177/220) (41/49) (1744/2261) 

I-495 

(2015-2018) 

78.7% 78.7% 61.7% 79.8% 81.6% 79.2% 80.0% 

(392/498) (295/375) (113/183) (631/791) (301/369) (95/120) (2018/2523) 

I-695 

(2016-2019) 

85.6% 82.4% 78.7% 87.0% 87.6% 82.7% 85.9% 

(297/347) (150/182) (59/75) (842/968) (219/250) (43/52) (1610/1874) 
a The percentage represents % of incidents of which durations were captured within the predicted interval with an 
80% confidence level 
 
3.3 KNOWLEDGE TRANSFERABILITY ANALYSIS (KTA) METHODOLOGY 

The primary functions of the KTA model are to first assess the transferability of available 
prediction rules and then identify their respective priorities in the transferring sequence. This is 
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due to the fact that the complex interrelations between the existing prediction rules—such as 
those mutually exclusive or supplementary in nature—may render the effectiveness dependent 
on not only which rules to adopt, but also their sequence of execution in the decision structure. 
Figure 3-5 illustrates the process for the rule transferability analysis including: 1) generation and 
update of the Rule Box to include available prediction rules from existing systems; 2) ranking of 
key factors for constructing available prediction rules; 3) identification of the transferring 
priority for available prediction rules; and 4) effectiveness assessment with respect to all 
transferred prediction rules. 

 

 
FIGURE 3-5: Illustration of the Transferability Analysis in the KTA Model 

 
Rule Box Generation and Update 

The primary function of the Rule Box is to house all effective prediction rules from 
existing IDPMs for assessing their transferability to a highway of similar features and incident 
patterns. As such, all well-calibrated prediction rules for the IDPMs for I-95, I-495, and I-695 are 
collected and classified into six categories, as shown in Figure 3-6, based on the incident nature 
and the resulting number of blocked lanes.  Depending on their usage for incident duration 
prediction, such rules in each category are further divided into six types with three pre-specified 
thresholds for classifying incident durations (i.e., 30, 60, and 120 minutes). 
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FIGURE 3-6: Classification of the Prediction Rules in the Rule Box 

 
Ranking of Key Factors Used in Constituting Prediction Rules 

As stated previously, the rule transferring priority concurrently determines not only 
which rules to transfer, but also the execution structure of the new IDPM. Hence, the set of 
prediction rules having the highest transferring priority shall have the following properties:  

• Their included factors for prediction are also the most critical set of contributors to the 
incident durations on the target new highway; and  

• They have achieved the highest level of prediction effectiveness with respect to incidents 
on their own highways. 
 
The methodology for assessing the transferability priority for each set of available rules in 

the Rule Box, based on the above two essential properties, is presented hereafter. First of all, all 
key factors contributing to the required incident duration are initially classified into the following 
seven categories, as shown in Table 3-3.
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TABLE 3-3: List of the Incident Duration’s Key Contributing Factors Classified by Category 

Category  Description  Item 

Category-1 

(# of responders) 

 

the number of different 
responders at the incident scene 

 # of total response units 

  # of arrived CHART 

  # of arrived police 

  # of arrived fireboard 

  # of arrived medical service 

  # of arrived tow service 

Category-2 

(First arrived 
responder) 

 

type of the first-arriving 
responders 

 Police first arrived 

  Medical service first arrived 

  Tow service first arrived 

  CHART first arrived 

  Fireboard first arrived 

Category-3 

(Vehicle status) 

 

the number and the type of 
vehicles involving in incidents 
and their damage levels 

  Overturned, lost-load, jack-knife 

  # of total involved vehicles 

  # of involved passenger cars 

  # of involved trucks 

  # of involved motorcycles 

Category-4 

(Pavement conditions) 

 indicators for the pavement 
conditions 

 Wet, dry, snow-ice, chemical wet, hazard 
material related 

Category-5 

(Lane blockage) 

 

indicators to denote the lane-
blockage conditions 

 # of blocked lanes 

  # of blocked shoulder lanes 

  # of blocked travel lanes 

  # of blocked auxiliary lanes 

  Travel lane blocked in tunnel 

  Travel lane blocked in toll 

Category-6 

(Operation center) 

 indicators reflecting different 
incident response centers 

 
AOC, TOC3, TOC4, TOC5, SOC 

Category-7  

(Time) 

 

temporal-related indicators 
associated with an incident 

 AM peak, PM peak, daytime, night 

  weekday, weekend 

  holiday, non-holiday 

  Spring, Summer, Fall, Winter 
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Transferability Ranking-I Analysis 
The purpose of this task is to identify the relative impacts of the above seven categories 

of factors on the resulting incident durations revealed in the target new system’s incident records. 
To do so, this study has adopted the permutation-based variable-importance measure (Biecek and 
Burzykowski, 2020) for ranking analysis, and provided a brief description of its core logic 
below:  

Given a set of 𝑛𝑛 incident records for 𝑝𝑝 contributing factors and the incident clearance 
duration 𝒀𝒀, then, let 𝑿𝑿 denotes the matrix of 𝑝𝑝 columns and 𝑛𝑛 rows, and the column vector of 𝒚𝒚 

shows the observed values of 𝒀𝒀. As such, 𝒚𝒚� = �𝑓𝑓�𝑥𝑥1�, … ,𝑓𝑓�𝑥𝑥𝑛𝑛��
′
 denotes the corresponding 

vector of predictions from the Random Forest (46) for 𝒚𝒚 for model 𝑓𝑓(), and ℒ(𝒚𝒚�,𝑿𝑿,  𝒚𝒚) be a loss 
function to quantify the goodness-of-fit. Then, the core algorithm can be summarized into the 
following steps: 

• Step 1: Compute 𝐿𝐿0 = ℒ(𝒚𝒚�,𝑿𝑿,  𝒚𝒚) (i.e., the value of the loss function for the original 
data). Then, for each contributing factor 𝑋𝑋𝑗𝑗 included in the model, repeat steps 2-5. 

• Step 2: Create a matrix 𝑿𝑿∗𝒋𝒋 by permuting the 𝑗𝑗-th column of 𝑿𝑿, i.e., by permuting the 
vector of observed values of 𝑋𝑋𝑗𝑗. 

• Step 3: Compute the model’s predicted 𝒚𝒚�∗𝒋𝒋 based on the modified data 𝑿𝑿∗𝒋𝒋. 
• Step 4: Compute the value of the loss function for the modified data: 𝐿𝐿∗𝑗𝑗 =

ℒ(𝒚𝒚�∗𝒋𝒋,𝑿𝑿∗𝒋𝒋,𝒚𝒚∗𝒋𝒋) 

• Step 5: Quantify the importance of 𝑋𝑋𝑗𝑗 (𝑣𝑣𝑣𝑣𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑗𝑗 ) by calculating 𝑣𝑣𝑣𝑣𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑗𝑗 = 𝐿𝐿∗𝑗𝑗/𝐿𝐿0 
 
With the computed importance of each contributing factor, one can do the ranking 

analysis based on the highest-importance factor in each category. For instance, if “the total 
number of responders” is identified to be the most important factor, then the category (i.e., 
Category 1) having this factor would be assigned the highest rank of 1. By excluding all other 
factors in Category 1 from the ensuing comparisons, if the next one with the highest importance 
in the remaining list is “number of trucks involved,” then the category (i.e., Category 3) having 
this factor shall be assigned a rank of 2. The same procedures can be iteratively executed to 
identify the proper rank for each of the remaining categories. 
 
Transferability Ranking-II Analysis 

The core of Ranking-II analysis is to rank the importance associated with each category 
of factors from the perspective of how often they have been used in the existing IDPMs’ 
prediction rules and the resulting effectiveness. The measurements proposed for such an analysis 
are defined below: 
• Coverage: For a given category of factors, its coverage is measured by the total number of 

incident records in the base dataset (i.e., total incident records from I-495, I-95, and I-495 for 
their model developments) that have been predicted by any set of rules which contain one or 
more factors from this category. For instance, the set of 134 rules that contain either one or 
more factors from the category of “# of responders” has been used to predict the duration for 
2,979 incidents in the base dataset. 
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• Accuracy: The total number of correctly predicted incidents out of the total “coverage” 
associated with each category. For instance, the group “the number of responders” is 
assessed to yield an “accuracy” level of 83.42%, based on their applications to 2,797 
incidents. 

• Proportion of conjunctive rules: The number of rules constituted with the command of 
“AND” out of the total rules (defined as frequency) associated with each of those seven pre-
classified groups of factors. 
 

With these measurements, one can compute the resulting rank for each category of 
factors under Rank-II analysis with the following Data Envelopment Analysis (DEA) method 
(Charnes et al., 1978), in which the objective function is to maximize the total positive 
measurements for each category: 
𝑀𝑀𝑀𝑀𝑥𝑥𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑀𝑀  𝐸𝐸𝑘𝑘 = ∑ 𝑢𝑢𝑅𝑅𝑦𝑦𝑟𝑟𝑘𝑘𝑠𝑠

𝑟𝑟=1   (1) 

𝑆𝑆𝑢𝑢𝑆𝑆𝑗𝑗𝑀𝑀𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡 ∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑘𝑘𝑠𝑠
𝑟𝑟=1 − ∑ 𝑣𝑣𝑅𝑅𝑥𝑥𝑅𝑅𝑘𝑘𝑚𝑚

𝑅𝑅=1 ≤ 0  

∑ 𝑣𝑣𝑅𝑅𝑥𝑥𝑅𝑅𝑘𝑘𝑠𝑠
𝑟𝑟=1 = 1  

𝑢𝑢𝑟𝑟 ≥ 0,  𝑟𝑟 = 1, … , 𝑠𝑠 

𝑣𝑣𝑅𝑅 ≥ 0,  𝑣𝑣 = 1, … ,𝑀𝑀 

 

where 𝐸𝐸𝑘𝑘 denotes the relative effectiveness of category 𝑘𝑘 among all categories (𝑘𝑘 = 1, … ,7), 𝑢𝑢𝑟𝑟 
and 𝑣𝑣𝑅𝑅 represent weights for the 𝑟𝑟𝑅𝑅ℎ positive measurement (i.e., coverage and accuracy levels) 
and 𝑣𝑣𝑅𝑅ℎ negative measurement (i.e., proportion of conjunctive rules), respectively; 𝑦𝑦𝑟𝑟𝑘𝑘 is the 
standardized value for the 𝑟𝑟𝑅𝑅ℎ measurement in category 𝑘𝑘, and 𝑥𝑥𝑅𝑅𝑘𝑘 is the standardized value for 
its 𝑣𝑣𝑅𝑅ℎ negative measurement computed from the base dataset. 
 

The computed effectiveness value for each category will then serve as an indicator for 
ranking the effectiveness of the seven categories of factors used by the existing IDPMs. 
 
Transferability Ranking Integration 

Given the rank assessment from both perspectives, one can then take the following steps 
to produce the final ranking list for the seven categories of factors: 

 
Let 𝛿𝛿𝑅𝑅∗ be the optimal rank for category 𝑣𝑣; 𝑟𝑟𝑅𝑅1 denotes the resulting rank from Rank-I test 

for category 𝑣𝑣; 𝑟𝑟𝑅𝑅2 represents the resulting rank from Rank-II test for category 𝑣𝑣; and 𝑤𝑤𝑅𝑅 stands for 
the number of existing rules using one or more factors from category i. Then, with the objective 
function shown in Equation (2), one can employ the method for rank aggregation by Pihur, Datta, 
and Datta (Pihur et al., 2009) to produce the final optimized ranking list for all categories. 

𝑀𝑀𝑣𝑣𝑛𝑛 �(|𝛿𝛿𝑅𝑅∗ − 𝑟𝑟𝑅𝑅1| + |𝛿𝛿𝑅𝑅∗ − 𝑟𝑟𝑅𝑅2|)
7

𝑅𝑅=1

× 𝑤𝑤𝑅𝑅 (2) 

The final ranking for the categories will be in descending order where the category 
ranked at the top of the list indicates that it contains the set of contributing factors with the most 
impacts on a detected incident’s resulting clearance duration. However, it is noticeable that the 
Rule Box, due to the contributions from several well-developed IDPMs, may contain multiple 
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prediction rules for the same category of incidents, but with different categories of factors. Thus, 
the following process has been proposed in this study to finalize the optimal transferring priority 
for such rules. 
 
Prioritizing Candidate Rules for Transferability Analysis 

For the convenience of assessing the transferring priority, all candidate rules based on their 
logic structure and target incident types are characterized into four types and assigned a specified 
score. Now, let Category 1 (i.e., # of responders) be the category with the computed rank of 1 
and Category 7 (i.e., time) with the computed rank of 5, the following presents a priority 
sequence, given by examples, for assigning the weights for each type of rules:  
• Type A rules: Assigning a score for each of those rules with a simple IF-THEN statement 

for estimating the lower bound of an incident’s clearance duration, based on the rank of the 
category that includes the factor embedded in the rule. For instance, the rule, “IF [more than 
8 response units arrived], THEN the duration >120 minutes” will be assigned with a score 
of “1,” because the condition variable of “8 response units” is one of the Category 1 factors. 

• Type B rules: Assigning a score for those with a simple IF-THEN statement for estimating 
the upper bound of an incident’s clearance duration, based on the rank of the group that 
comprises the factor constituting the rule and an additional status score of “200,” to ensure 
that all such rules will be assessed and transferred after all other types of rules. For instance, 
the rule, “IF [no tow service arrived], THEN the duration <30 minutes” will be assigned the 
assessment score of “201,” because its condition variable of “no tow service,” belongs to 
Category 1 factors. 

• Type C rules: Assigning a score for those rules constituted with a nest of IF-THEN 
statements and the relation of “AND,” based on the sum of scores computed from the rank of 
the group associated with the factor constituting each IF-THEN statement in the entire set of 
rules connected with “AND.” For instance, the rule of “IF on [holiday] AND [tow service 
arrived], THEN the duration >60 minutes” will be assigned with the assessment score of 
“6,” because its two condition variables, [holiday] and [tow service arrived], belong to 
factors in Category 7 and Category 1, respectively.  

• Type D rules: Assigning the score for those Rules with a nest of IF-THEN statements and 
the relation of “OR” based on the sum of its assigned priority status score of “100” and the 
lowest rank among those categories which include the factors embedded in all IF-THEN 
statements connected with “OR.” As such, the rule of “IF on [weekend] OR [police arrived], 
THEN the duration >30 minutes” will be assigned with the assessment score of “101,” 
because its two condition variables, [weekend] OR [police arrived], belong to Category 7 and 
Category 1, respectively. Thus, the final assessment score for this rule shall be the sum of 
“100” plus “1.” 

 
Transferability Effectiveness Test 

As with the standard practice for transferability analysis, this study adopts the following 
two Measures of Effectiveness (MOEs) for assessing each candidate rule’s performance with 
respect to the incident records from the target roadway: 1) the confidence level that demonstrates 
the accuracy of a candidate rule, and 2) the support level that shows the percentage of incident 
records that are consistent with the set of “IF” conditions in an identified prediction rule.  
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Conceivably, those prediction rules yielding a sufficiently high confidence level and 
having a reasonable support level will be deemed transferable. As illustrated in Figure 3-7, the 
entire process for transferability effectiveness assessment with respect to all candidate prediction 
rules in the Rule Box can be illustrated with the following steps: 

• Step 1: Determine the minimum confidence level (𝑋𝑋%) and the lower bound (𝑆𝑆𝐿𝐿%) as 
well as the upper bound (𝑆𝑆𝑈𝑈%) of the support level, based on the information in the Rule 
Box and the available incident records from the target highway.  

• Step 2: Utilize the incident data in each subset of CPI and CPD on the target highway to 
verify the effectiveness of each candidate rule with respect to its applicable incident 
group. 

• Step 3: Transfer the prediction rule to the new model if it can achieve the confidence 
level and the support level specified in Step 1. 

• Step 4: Filter out the incident records already successfully classified by a prediction rule 
from the target incident dataset and proceed with the same transferability analysis 
process with the remaining incident records. 

• Step-5: Stop the transferring process if no more classification rules can be transferred, 
otherwise, go to Step 2. 

 
FIGURE 3-7: Flow Chart of the Transferability Test in the Classification Rules Transferring Process 

 
3.4 CASE STUDY: I-70 IN MARYLAND 

For illustration and evaluation of the proposed KTA method, this study has selected I-70 in 
Maryland for the case study. The 2016-2018 incident records from the CHART II Database were 
for model calibration, and those from 2019 served for performance evaluation. As illustrated in 
Figure 3-8, the system covers I-70 from Exit 1 to Exit 94 in Maryland. 

 
FIGURE 3-8: Spatial Scope of the IDPM–I-70 
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Incident Categorization 
Figure 3-9 shows the results of the initial incident categorization, including the mean for 

each categorized group and the range of its variation within the confidence intervals of 60%, 
70%, and 80%. Note that due to the lack of sufficient samples, CPI3 and CPD3 are merged with 
CPI2 and CPD2, respectively. 

 
FIGURE 3-9: Initial Incident Categorization and Estimated Clearance Duration for I-70 

 
Transferability Ranking-I 

Figure 3-10 shows the results of Ranking-I transferability analysis, where the relative 
importance of the seven categories is based on the factor of the highest rank included in each 
category. For instance, “# of total responders” is identified to be the most important factor, thus 
the category (i.e., Category 1: # of responders) including this factor would be assigned with the 
highest rank of 1. Then, by excluding all other factors in Category 1 from the list for comparison, 
the next one with the highest importance is “# of involved trucks.” Hence, Category 3 (i.e., 
Vehicle status), containing this factor, shall be assigned the rank of 2. 
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FIGURE 3-10: Results of Transferability Ranking-I Analysis for I-70 

 
Transferability Ranking-II 

Table 3-4 presents the properties of seven categories of factors used to construct the 
prediction rules from the existing IDPMs, and the results of transferability ranking analysis with 
respect to their effectiveness, where those categories with higher E-values are given higher 
priorities for the transferability assessment. 

 
TABLE 3-4: Results of Transferability Ranking-II Analysis for I-70 

 
# of 

Responders 

First 
arrived 

responder 

Vehicle 
status 

Pavement 
conditions 

Lane 
blockage 

Operation 
center Time 

Coverage 
(# of cases) 2979/0.665a 247/0.074 1478/0.640 1220/0.203 343/0.154 596/0.079 684/0.268 

Accuracy 
(mean) 83%/0.377 75%/0.341 85%/0.383 89%/0.404 88%/0.398 82%/0.370 82%/0.371 

Proportion of 
conjunctive 

rules 
0.59/0.331 0.80/0.449 0.64/0.357 0.39/0.246 0.68/0.380 0.69/0.386 0.81/0.457 

𝑬𝑬 − 𝒗𝒗𝒗𝒗𝒗𝒗 1.000 0.411 0.642 1.000 0.567 0.521 0.444 

𝑹𝑹𝒗𝒗𝑹𝑹𝑹𝑹 1 7 3 1 4 5 6 

Note: 
a The left-hand side of the number is the measurement (e.g., 2979), while the right-hand side is the normalized 
measurement (e.g., 0.665). 
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Finalized Ranking for Transferability Assessment 
Table 3-5 reports the finalized ranking results, reflecting the relative importance of those 

categories of factors in the transferability assessment. For instance, those candidate prediction 
rules, comprising factors from the category “# of responders” should be given the highest 
priority in the sequence of transferring effectiveness assessment for I-70. 
 

TABLE 3-5: Final Ranking Analysis Results for all categories of factors 

 # of 
Responders 

First 
arrived 

responder 

Vehicle 
status 

Pavement 
conditions 

Lane 
blockage 

Operation 
center Time 

Frequency 134 15 129 41 31 16 54 

Transferability 
ranking-I 1 6 2 4 3 7 5 

Transferability 
ranking-II 1 7 3 1 4 5 6 

Optimal 
transferability 

ranking 
1 7 2 4 3 6 5 

 
Transferring and Generation of Prediction Rules 

Overall, 36 out of the total 54 prediction rules in the IDPM-I-70 are transferred from 
existing IDPMs for I-95, I-495, and I-695, and the remaining 18 rules were calibrated with the 
same method by Won et al. (42) to reflect some local-unique incident patterns. Figure 3-11 
illustrates the example of the rule-generation process for CPI2 and its application with all 
embedded “IF-THEN” rules. Table 3-6 lists the prediction rules of IDPM–I-70 transferred from 
IDPMs for I-95, I-495, and I-695. 
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FIGURE 3-11: An Example of an Application for CPI with Two-Travel-Lane Blockage. (a) The generation Process 

of the Prediction Rules; (b) The Application Process 
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TABLE 3-6: Prediction Rules of the IDPM for I-70 Transferred from I-95, I-495, and I-695 

Transferred Rules Description – CPI1 
IF [Tow service arrived] THEN ≥30 
IF [More than 3 vehicles involved] THEN ≥30 
IF [More than 1 CHART arrived] AND [Police first arrived] THEN ≥30 
IF [Peak hour] AND [More than 2 vehicles involved] THEN ≥30 
IF [Car overturned] AND ([Weekend] OR [Tow service arrived]) THEN ≥30 
IF [Fireboard first arrived] THEN <30 

IF [Snow-ice pavement] OR [More than 1 truck involved] OR [More than 7 respond units 
arrived] OR [AOC center]  THEN ≥60 

IF [No tow service arrived] AND [No truck involved] THEN <60 
IF [Less than 4 respond units] OR [No truck involved] THEN <120 

Transferred Rules Description – CPI2 
IF [Tow service arrived] THEN ≥30 
IF [More than 4 response units arrived] THEN ≥30 
IF [Dry pavement] THEN <30 
IF [More than 6 response units arrived] THEN ≥60 
IF [More than 1 Fireboard arrived] OR [Snow-ice pavement] THEN ≥60 
IF [No tow service arrived] OR [No truck] THEN <60 
IF [More than 7 respond units arrived] OR [More than 5 vehicles involved] THEN ≥120 

IF [More than 1 truck involved] OR [More than 3 vehicles involved] OR [Hazard materials 
related] OR [More than 7 respond units arrived] THEN ≥120 

IF [More than 4 vehicles involved] OR [Wet pavement] THEN ≥120 
Transferred Rules Description – CPD1 

IF [Tow service arrived] AND [Fireboard arrived] THEN ≥30 
IF [More than 2 CHART arrived] AND [CHART first arrived] THEN ≥30 

IF [Wet pavement] AND [More than 1 police arrived] AND [Auxiliary lane blocked] AND 
[Shoulder lane blocked] THEN ≥30 

IF [More than 2 CHART arrived] OR ([More than 4 respond units arrived] AND [Wet 
pavement]) THEN ≥30 

IF ([Daytime] AND [More than 4 respond units arrived]) OR ([Truck involved] AND [More 
than 1 police arrived]) THEN ≥30 

IF [Dry pavement] THEN <30 

IF [More than 6 response units arrived] OR [Truck overturned] OR [Bus involved] OR 
[Vehicle lost load] THEN ≥60 

IF [Truck involved] AND ([More than 5 respond units arrived] OR [Auxiliary lane 
blocked]) THEN ≥120 

IF [Snow-ice pavement] OR ([Auxiliary lane blocked] AND [Chemical wet pavement]) THEN ≥120 
Transferred Rules Description – CPD2 

IF [Tow service arrived] AND [Fireboard arrived] THEN ≥30 

IF [Snow-ice pavement] OR [Chemical wet pavement] OR [Truck jackknifed] OR [More 
than 6 respond units arrived] THEN ≥30 

IF ([Night] OR [More than 4 respond units arrived]) AND [More than 1 police arrived] THEN ≥30 

IF [Car overturned] OR [More than 1 shoulder lane blocked] OR ([Truck involved] AND 
[Pickup involved]) THEN ≥30 

IF [More than 1 tow service arrived] THEN ≥60 
IF [Truck involved] AND [More than 5 response units arrived] THEN ≥60 
IF ([Truck involved] OR [More than 2 vehicles involved]) AND [Night] THEN ≥60 
IF [More than 1 tow service arrived] THEN ≥120 
IF [No truck involved] THEN <120 
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Model Evaluation 
The evaluation results of the IDPM for I-70 with both transferred and customized local 

rules are shown in Table 3-7. Noticeably, the IDPM-I-70 constituted mostly transferred rules 
(i.e., 36 out of 54 rules) that can achieve an accuracy level of 87% with the training dataset (i.e., 
2016-2018) and 82% with the test dataset (i.e., 2019). Its level of performance is comparable to 
existing IDPMs but demands much less resources with an automated computer program and 
needs not to be constrained by the available size of incident records. 

 
 Table 3-8 shows the comparison results between the IDPMs for I-70 with and without the 
KTA model, where the former yields a better accuracy even though both models have similar 
training accuracy. This is due to the fact that even if one can find the common prediction rules 
among incident records in the training dataset to fit with a sufficient level of training accuracy, 
such rules might be too specific (e.g., overfit), due to the lack of enough data samples, to capture 
those incident records in the test dataset. The proposed KTA model, in contrast, relies on a great 
number of empirical rules from previously developed IDPMs which have been proven reliable in 
estimating incident duration, thus it can be more robust in providing an acceptable and even 
better accuracy. 
 

TABLE 3-7: Results of Model Evaluation for IDPM–I-70 

Evaluated by groups of incident records 

 CPI1 CPI2 CPD1 CPD2 CF Overall 

Training set 
(2016-2018) 

87.80% 

(36/41) 

85.37% 

(35/41) 

86.17% 

(81/94) 

87.50% 

(35/40) 

100% 

(6/6) 

86.94% 

(193/222) 

Test set (2019) 
100.00% 

(10/10) 

68.75% 

(11/16) 

78.26% 

(18/23) 

90.00% 

(9/10) 

100% 

(1/1) 

81.67% 

(49/60) 

Note: Numbers in the parenthesis represent “the number of data whose clearance time is correctly estimated by the 
model/the total number of incident records in the group.” 

 
TABLE 3-8 Comparison Between the Models Developed with and without the KTA Model 

 Model 1 Model 2 

KTA Model Yes No 

Training Accuracy 86.94% 83.84% 

Testing Accuracy 81.67% 69.05% 

Total # of Rules 54 31 

 

3.5 CONCLUSIONS 
To circumvent the demanding development efforts and the need for an extensive dataset 

for calibration of an IDPM’s prediction rules, this study has developed an innovative Knowledge 
Transferability Analysis (KTA) model that allows the construction of a new system to take 
advantage of existing IDPMs’ embedded rules with an automated process. The proposed model 
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features the use of a series of transferability analysis methods with respect to the existing IDPMs 
to identify the effectiveness and transferring priority of those adopted prediction rules. 

  
The effectiveness of the proposed model has been evaluated with the incident data from 

I-70 in Maryland. The result of extensive evaluation with multi-year incident records indicates 
that the performance of the IDPM for I-70, with 67% of transferred rules, can yield prediction 
accuracy comparable to existing IDPMs that demand much more development resources. 
Although a more extensive assessment of the proposed KTA method can be done for other 
highways in different regions, the preliminary results from the I-70 case study seem to offer a 
promising avenue for responsible highway agencies to cope with the difficulty of insufficient 
incident records in the IDPM development for some highways. 

 
Future research along this line includes: 1) extending the KTA model’s application to 

major signalized arterials mostly with a small size of well-documented incident records, and 2) 
constructing a supplemental module to enhance the efficiency and robustness of the rule-based 
IDPMs. 
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Chapter 4 
Real-time Incident Queue Propagation (R-IQP) Model for Highways 

with Insufficient Traffic Surveillance Information 
 
4.1 PROBLEM NATURE 

The primary challenge for estimating a major incident’s queue impacts in real-time lies 
mainly in the lack of reliable data to reflect the outflow capacity at the lane blockage location 
and the incoming flow rate from upstream roadway segments. Such data inadequacy in practice 
is likely due to various factors, including, but not limited to, no detector deployment, long 
spacing between detectors, or poor data quality. Hence, to provide a robust estimate of incident 
queue impacts, a prediction model for use in daily operations shall function effectively under the 
following traffic surveillance scenarios:  

• Scenario 1: Sufficient detectors with quality data are available over the target roadway 
segment. 

• Scenario 2: Only sparsely distributed detectors on the target roadway segment. 
• Scenario 3: The real-time data from either well-spaced or sparsely distributed detectors 

fail to provide information on traffic speed, flow rate, or occupancy. 
• Scenario 4: No deployment of traffic detectors on the target roadway. 

 
Incident Queue Dynamics  

Regardless of available traffic data, the first challenge for developing the R-IQP model is 
to reliably reflect the complex queue dynamics under various incident lane-blockage scenarios. 
Figure 4-1 illustrates key factors and their contributions to the formation of incident queue 
dynamics. For example, the queue discharging rate is time-varying in nature, depending on the 
number of incident-blocked lanes and the type of lane-changing maneuvers by the open-lane 
traffic. The resulting shockwave propagation speed is further affected by the ramp volume and 
the mainline arriving flow rate. Conceivably, the dynamic nature of most such key factors 
demands that any impact prediction model for use in practice should be capable of performing 
timely updates with any real-time available information.  
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FIGURE 4-1: The Interrelations Between Critical factors and the Formation of Incident Queue Dynamics 

 
Estimation of the Discharging Flow Rate 

The actual outflow capacity from the lane drop spot is naturally less than the expected 
capacity of the open lane, known as the capacity drop phenomenon (Weng and Meng, 2013; 
Yuan et al., 2017). Extensive experimental results confirm that such additional reduction is 
approximately 5% to 30% below its theoretical capacity (Kerner, 2002; Cassidy and Bertini, 
1999; Sarvi et al., 2007; Chung et al., 2007; Elefteriadou et al., 1995; Persaud et al., 1998; and Yi 
and Mulinazzi, 2007), attributing mainly to the slower lane-changing vehicles that create local 
voids during the merging process as illustrated in Figure 4-2(a) (Leclercq et al., 2016; Wang and 
Meng, 2013; and Won, 2019). More specifically, compared with mandatory lane changes, the 
impacts from discretionary lane changes tend to be less significant because their resulting voids 
are mostly created by vehicles with less reduced speeds at locations relatively away from the 
lane blockage spot. Note that such voids, if created concurrently by sequential lane-changing 
maneuvers are likely to be compressed, as illustrated in Figure 4-2(b). 
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 (a) Schematic figure of the slower merging vehicles that create local voids 

 
 (b) Schematic figure of the multiple lane changes 

FIGURE 4-2: Illustration of Vehicle Discharging Process During Incidents 
 

In addition, the discharging flow rate may also be affected by the rubbernecking impacts, 
resulting from drivers’ perceptions and responses to the severity at the incident scene.  

 
In summary, the discharge flow rate from a lane-blockage segment is a time-varying 

variable to be estimated from real-time traffic data, because it varies with incident nature, traffic 
states, and driving behaviors. 
 
Propagation of the Incident Queues 

Assuming the lane blockage status remains unchanged during part of the incident 
clearance period, the speed of the queue propagation generally increases with the upstream 
coming traffic speeds and flow rates which may also be affected by weaving vehicles entering 
and leaving the roadway, and also by the potential spillback from off-ramps. 

 
In addition, vehicles from upstream segments tend to reduce their speeds when 

approaching and perceiving the incident queue, which further contributes to the complex mutual 
impacts between the queue propagation speed and the arriving flow rates as well as speeds. 
 
Primary Functions of the Proposed R-IOP 

In response to the aforementioned needs, the proposed model for incident queue impacts 
is designed to flexibly execute the following functions for highways segments from having ideal 
coverage of reliable traffic detectors to the extreme scenario of no sensor placement at all:  

• Reliably reflect the time-varying discharge flow rate under various lane-blockage 
incident scenarios; 

• Robustly capture the incident-incurred queue propagation patterns based on the 
upstreaming coming traffic and discharging flow rate during incident clearance 
operations; and 

• Dynamically update the estimated impacts to upstream traffic due to the incident queues 
and resulting shockwaves. 
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4.2 REAL-TIME INCIDENT QUEUE PROPAGATION (R-IQP) MODEL 
Table 4-1 summarizes the key notations for variables used in the R-IQP model under the 

perfect traffic surveillance scenario (i.e., Scenario 1): 
 

TABLE 4-1: Key Notations for the Real-Time Incident Queue Propagation (R-IQP) Model 

Freeway-related variables 
𝑣𝑣 Segment index 
𝑀𝑀 On-ramp 
𝑛𝑛 Off-ramp 
𝑘𝑘 Time index 
𝑣𝑣𝑅𝑅𝑘𝑘 Recorded speed from the sensor on segment 𝑣𝑣 at time interval 𝑘𝑘 (mph) 
𝑞𝑞𝑅𝑅𝑘𝑘 Recorded flow rate from the sensor on segment 𝑣𝑣 at time interval 𝑘𝑘 (veh/hr) 
𝜆𝜆𝑅𝑅 Number of lanes at the location of segment 𝑣𝑣 
𝑣𝑣𝑓𝑓 Free flow speed 
𝐶𝐶 Theoretical capacity (veh/hr) 

𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚 Jam density (veh/mile) 
Incident-related variables 

𝐷𝐷𝑅𝑅 Distance from the sensor of segment 𝑣𝑣 to the incident spot (mile) 
𝐿𝐿𝑝𝑝 Length of the TMC segment where the incident occurs 

𝐷𝐷𝑝𝑝 Distance from the upstream location of the TMC segment where the incident 
occurs to the incident spot (mile) 

𝑣𝑣𝑝𝑝𝑘𝑘 Recorded probe speed of the TMC segment where the incident occurs at time 
interval 𝑘𝑘 (mph) 

𝜆𝜆𝐵𝐵𝑘𝑘  Number of blocked lanes at time interval 𝑘𝑘 
𝐿𝐿𝑞𝑞(𝑆𝑆) Queue length at time 𝑆𝑆 (mile) 
𝐶𝐶𝐶𝐶 Estimated lane clearance duration (mins) 
𝑞𝑞𝑘𝑘𝑑𝑑 Discharge flow rate at time interval 𝑘𝑘 (veh/hr) 

 
Incident Queue Propagation Model under Scenario 1 

Under Scenario 1, the arriving flow rate and speed data are available from sensors 
upstream of the incident scene for computing the queue propagation process. 

  
Figure 4-3 illustrates the queue propagation process due to an incident, where 

shockwaves at different speeds may occur between traffic at subsequent detectors, because 
drivers may begin to reduce speeds at different rates depending on the distance to the perceived 
queue spot, and thus contribute to the formation of different speeds of waves in the traffic stream 
between detectors.  
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FIGURE 4-3: The Spatial Recursive Evolution of the Queue Dynamics 

 
More specifically, let the entire time needed for vehicles, detected by the sensor on 

segment 𝑣𝑣 at interval 𝑘𝑘 to join the queue, be denoted as 𝐶𝐶𝑅𝑅𝑘𝑘, and decomposed it into the following 
three-time intervals: 

𝐶𝐶𝑅𝑅𝑘𝑘 = 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 + 𝐶𝐶𝑅𝑅,𝑏𝑏𝑘𝑘 + 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘  (1) 

where, 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘  is the time duration for vehicles, detected at the sensor on segment 𝑣𝑣 at time interval 
𝑘𝑘, to maintain the same speed (𝑣𝑣𝑅𝑅𝑘𝑘) until they are forced to exercise a speed reduction due to 
encountering of the slow downstream traffic flows. Such traffic state changes will naturally form 
a wave (𝑤𝑤𝑅𝑅−1, 𝑅𝑅) in the vehicle stream between two detector stations. Hence it can be expressed 
as follows: 

𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 = �
𝐷𝐷𝑅𝑅 − 𝐷𝐷𝑅𝑅−1
𝑤𝑤𝑅𝑅−1, 𝑅𝑅 + 𝑣𝑣𝑅𝑅𝑘𝑘

,   𝑤𝑤𝑅𝑅−1, 𝑅𝑅 > 0

0,                       otherwise
 (2) 

𝑤𝑤𝑅𝑅−1, 𝑅𝑅 =
𝑞𝑞𝑅𝑅−1𝑘𝑘 − 𝑞𝑞𝑅𝑅𝑘𝑘

�
𝑞𝑞𝑅𝑅−1𝑘𝑘

𝑣𝑣𝚤𝚤−1𝑘𝑘� � − �
𝑞𝑞𝑅𝑅𝑘𝑘

𝑣𝑣𝑅𝑅𝑘𝑘
�

 
(3) 

𝐶𝐶𝑅𝑅,𝑏𝑏𝑘𝑘  is the time duration for vehicles, detected at the sensor on segment 𝑣𝑣 at time interval 𝑘𝑘, to 
travel with the reduced speed (�̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 ) due to the slower downstream traffic until they start to 
further decelerate when they observe the end of the queue. Such reduced speed (�̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 ) shall be 
lower or equal to the average speed of the downstream traffic, (�̅�𝑣𝑅𝑅−1𝑘𝑘 ). By introducing the 
parameter 𝑘𝑘, it can be expressed as follows: 

�̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 = �̅�𝑣𝑅𝑅−1𝑘𝑘 × 𝜅𝜅,   for 0 < 𝜅𝜅 ≤ 1 (4) 
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𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘  is the time duration for vehicles, detected by the sensor on segment 𝑣𝑣 at time interval 𝑘𝑘, from 
noticing the incident queues to eventually joining them. Specifically, vehicles often start to 
reduce their speeds from a proper distance to join the queue safely and smoothly.  
 

As such, let �̅�𝑣𝑅𝑅,𝑐𝑐𝑘𝑘  be the estimated average speed of vehicles detected by the sensor on 
segment 𝑣𝑣 at time interval 𝑘𝑘 during the time duration from noticing to eventually joining the 
incident queues, and 𝑞𝑞𝑑𝑑𝑘𝑘 be the recorded discharge flow rate at the lane blockage spot at time 
interval 𝑘𝑘, then one can formulate 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘  as follows: 

𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘 =
𝜏𝜏

𝑞𝑞𝑅𝑅𝑘𝑘 − 𝑞𝑞𝑑𝑑𝑘𝑘 × �1 − 𝛿𝛿𝐵𝐵
(−𝐶𝐶𝐶𝐶)�

𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚𝜆𝜆𝑅𝑅
+ �̅�𝑣𝑅𝑅,𝑐𝑐𝑘𝑘

 
(5) 

�̅�𝑣𝑅𝑅,𝑐𝑐𝑘𝑘 = �̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 − ��̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 − 𝑣𝑣𝑞𝑞𝑘𝑘� × 𝛼𝛼 (6) 

where 𝜏𝜏 indicates the distance from the end of the queue when vehicles start braking to join the 
queue; 𝛼𝛼 indicates the reduction rate for vehicles to reduce the speed from �̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘  to 𝑣𝑣𝑞𝑞𝑘𝑘; and the 

term, 
𝑞𝑞𝑖𝑖
𝑘𝑘−𝑞𝑞𝑑𝑑

𝑘𝑘×�1−𝛿𝛿𝐵𝐵
(−𝐶𝐶𝐶𝐶)�

𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗𝜆𝜆𝑖𝑖
, is for computing the queue propagation speed, where �1 − 𝛿𝛿𝐵𝐵

(−𝐶𝐶𝐶𝐶)� is 
the function to approximate the reduction in the outflow at the end of the queue under different 
lane blockage scenarios and incident durations, in which 𝛿𝛿𝐵𝐵 is the parameter to be calibrated for 
each lane blockage scenario. 
 
 With the computed 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘  and 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘  and by replacing 𝐶𝐶𝑅𝑅,𝑏𝑏𝑘𝑘  with 𝐶𝐶𝑅𝑅𝑘𝑘 − 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 − 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘 , the travel 
distance for vehicles detected by the sensor on segment 𝑣𝑣 at time interval 𝑘𝑘 to completely joined 
the queue can be formulated as follows: 

𝐷𝐷𝑅𝑅 − �𝐿𝐿𝑞𝑞�𝐶𝐶𝑅𝑅−1𝑘𝑘 � +
𝑞𝑞𝑅𝑅𝑘𝑘 − 𝑞𝑞𝑑𝑑𝑘𝑘 × �1 − 𝛿𝛿𝐵𝐵

(−𝐶𝐶𝐶𝐶)�
𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚𝜆𝜆𝑅𝑅

× �𝐶𝐶𝑅𝑅𝑘𝑘 − 𝐶𝐶𝑅𝑅−1𝑘𝑘 ��

= 𝑣𝑣𝑅𝑅𝑘𝑘 × 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 + �̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 × (𝐶𝐶𝑅𝑅𝑘𝑘 − 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 − 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘 ) + �̅�𝑣𝑅𝑅,𝑐𝑐𝑘𝑘 × 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘  
(7) 

where 𝐿𝐿𝑞𝑞�𝐶𝐶𝑅𝑅−1𝑘𝑘 � +
𝑞𝑞𝑖𝑖
𝑘𝑘−𝑞𝑞𝑑𝑑

𝑘𝑘×�1−𝛿𝛿𝐵𝐵
(−𝐶𝐶𝐶𝐶)�

𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗𝜆𝜆𝑖𝑖
× �𝐶𝐶𝑅𝑅𝑘𝑘 − 𝐶𝐶𝑅𝑅−1𝑘𝑘 � is to compute the resulting queue length after 

vehicles detected by the sensor on segment 𝑣𝑣 at time interval 𝑘𝑘 have joined the queue.  

Based on Eqs. (2)-(7), one can then solve for 𝐶𝐶𝑅𝑅𝑘𝑘 with Eq. (8): 

𝐶𝐶𝑅𝑅𝑘𝑘 =
𝐷𝐷𝑅𝑅 − 𝐿𝐿𝑞𝑞�𝐶𝐶𝑅𝑅−1𝑘𝑘 �+ �

𝑞𝑞𝑅𝑅𝑘𝑘 − 𝑞𝑞𝑑𝑑𝑘𝑘 × �1 − 𝛿𝛿𝐵𝐵
(−𝐶𝐶𝐶𝐶)�

𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚𝜆𝜆𝑅𝑅
�× 𝐶𝐶𝑅𝑅−1𝑘𝑘 − �𝑣𝑣𝑅𝑅𝑘𝑘 − �̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 �× 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 − ��̅�𝑣𝑅𝑅,𝑐𝑐𝑘𝑘 − �̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 �× 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘

��̅�𝑣𝑅𝑅,𝑏𝑏
𝑘𝑘 +

𝑞𝑞𝑅𝑅
𝑘𝑘 − 𝑞𝑞𝑑𝑑𝑘𝑘 × �1 − 𝛿𝛿𝐵𝐵

(−𝐶𝐶𝐶𝐶)�
𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚𝜆𝜆𝑅𝑅

�
 (8) 

Finally, one can compute the queue length at time 𝐶𝐶𝑅𝑅𝑘𝑘 by Eq. (9) and the average speed of 
vehicles detected by the sensor on segment 𝑣𝑣 at time interval 𝑘𝑘 to join the queue (�̅�𝑣𝑅𝑅𝑘𝑘) by Eq. (10). 
The results from both equations then serve as the input for computing the time needed for vehicle 
detected by the sensor on segment 𝑣𝑣 + 1 at time interval 𝑘𝑘 to join the queue. 
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𝐿𝐿𝑞𝑞�𝐶𝐶𝑅𝑅𝑘𝑘� = 𝐿𝐿𝑞𝑞�𝐶𝐶𝑅𝑅−1𝑘𝑘 �+
�𝑞𝑞𝑅𝑅𝑘𝑘 − 𝑞𝑞𝑑𝑑𝑘𝑘 × �1 − 𝛿𝛿𝐵𝐵

(−𝐶𝐶𝐶𝐶)��× �𝐶𝐶𝑅𝑅𝑘𝑘 − 𝐶𝐶𝑅𝑅−1𝑘𝑘 �
𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚𝜆𝜆𝑅𝑅

 (9) 

�̅�𝑣𝑅𝑅𝑘𝑘 =
�̅�𝑣𝑅𝑅𝑘𝑘 × 𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 + �̅�𝑣𝑅𝑅,𝑏𝑏𝑘𝑘 × 𝐶𝐶𝑅𝑅,𝑏𝑏𝑘𝑘 + �̅�𝑣𝑅𝑅,𝑐𝑐𝑘𝑘 × 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘

𝐶𝐶𝑅𝑅,𝑅𝑅𝑘𝑘 + 𝐶𝐶𝑅𝑅,𝑏𝑏𝑘𝑘 + 𝐶𝐶𝑅𝑅,𝑐𝑐𝑘𝑘
 (10) 

Notably, if there are ramps between segment 𝑣𝑣 and segment 𝑣𝑣 − 1, the functions to 
approximate the traffic flow speed impact by ramps, according to the METANET model 
(Messmer and Papageorgiou, 1990), can be based on the ratio between the number of vehicles 
from the ramp and the target mainline segment’s volume. In this regard, 𝑣𝑣𝑅𝑅𝑘𝑘 and 𝑞𝑞𝑅𝑅𝑘𝑘 in the above 
equations can be replaced with 𝑣𝑣�𝑅𝑅𝑘𝑘 and 𝑞𝑞�𝑅𝑅𝑘𝑘, as formulated in Eq. (11) and Eq. (12):  

𝑞𝑞�𝑅𝑅𝑘𝑘 = 𝑞𝑞𝑅𝑅𝑘𝑘 + 𝑞𝑞𝑅𝑅,𝑚𝑚𝑘𝑘 − 𝑞𝑞𝑅𝑅,𝑛𝑛𝑘𝑘  (11) 

𝑣𝑣�𝑅𝑅𝑘𝑘 = min�𝑣𝑣𝑓𝑓 ,   𝑣𝑣𝑅𝑅𝑘𝑘 × �1 − �
𝑞𝑞𝑅𝑅,𝑚𝑚𝑘𝑘 − 𝑞𝑞𝑅𝑅,𝑛𝑛𝑘𝑘

𝑞𝑞�𝑅𝑅𝑘𝑘
��� (12) 

where 𝑣𝑣𝑓𝑓 is the prespecified free-flow speed; 𝑞𝑞𝑅𝑅,𝑚𝑚𝑘𝑘  and 𝑞𝑞𝑅𝑅,𝑛𝑛𝑘𝑘  denote the flow rate of on-ramps and 
off-ramps between segment 𝑣𝑣 and segment 𝑣𝑣 − 1 at time interval 𝑘𝑘, respectively. 
 

The above computations (i.e., Eqs. (1)-(12)) can then be recursively adopted to compute 
the entire time needed for vehicles detected by the sensor at the next upstream segment (i.e., the 
sensor on segment 𝑣𝑣 + 1) at interval 𝑘𝑘 to join the queue (𝐶𝐶𝑅𝑅+1𝑘𝑘 ) and the resulting queue length at 
time 𝐶𝐶𝑅𝑅+1𝑘𝑘 , i.e., 𝐿𝐿𝑞𝑞�𝐶𝐶𝑅𝑅𝑘𝑘� until the time the incident has been cleared, that is, when 𝐶𝐶𝐼𝐼𝑘𝑘 ≥ 𝐶𝐶𝐶𝐶, where 
𝑣𝑣 = 1, … , 𝐼𝐼. 

 
In brief, starting from collecting the recorded flow rate and speed at the onset of the 

incident from the sensor closest to the far upstream ones, one can recursively compute mutual 
impacts between the incoming flow and the queue propagation using Eqs. (1)-(8), and Eq. (10), 
as well as the resulting incident queue length using Eq. (10). Additionally, if the on/off-ramp 
volumes are available, Eq. (11) and Eq. (12) can be introduced to approximate the speed and the 
flow rate affected by ramp flows. 
 
Model Enhancements for Highways Without Detectors 

For the R-IQP to perform the queue impact estimation on highways without reliable 
detectors, it needs the following two supplemental models calibrated with real-time speed data 
from probe vehicles (e.g., RITIS (CATT, 2023)) or other open sources (e.g., Google Map): 

• A model for estimating discharge flow rate from the lane-blockage segment using only 
speed data; and  

• A model to approximate the arriving flow rate from upstream segments of the lane-
blockage location. 

 
Discharge Flow Rate Estimation Model 

Figure 4-4 illustrates the discharge flow rate at an incident lane blockage location and its 
relations with a Traffic Message Channel (TMC) where the speed from probing vehicles is 
recorded. This study adopts the method of Support Vector Regression (SVR) (Cortes and 
Vapnik, 1995) to capture the quantitative relation between the discharge rate and its key 
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contributing factors, including the time-varying traffic conditions, incident nature (e.g., lane 
blockage scenarios), and mandatory as well as discretionary lane changing frequencies. 

 
FIGURE 4-4: Schematic Figure of the Discharge Flow Rate at the Lane Blockage Location 

 
With only the probe speed data, one needs to first estimate the impact of drivers’ 

rubbernecking behaviors on the discharging flow rate out of the lane-blockage segment, which 
can be specified as follows:  

𝑋𝑋1 = max

⎝

⎜
⎛
𝜃𝜃,

𝐷𝐷𝑝𝑝
𝐿𝐿𝑝𝑝
𝑣𝑣𝑃𝑃𝑘𝑘

−
𝐿𝐿𝑝𝑝 − 𝐷𝐷𝑝𝑝
𝑣𝑣𝑓𝑓 ⎠

⎟
⎞

× 𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚 × �𝜆𝜆 − 𝜆𝜆𝐵𝐵𝑘𝑘� (13) 

where 𝜃𝜃 is the parameter to represent the maximum speed for vehicles traversing the lane-
blockage segment to not cause a reduction in the open lanes’ capacity and consequently the 
discharging flow rate; and 𝐷𝐷𝑝𝑝

𝐿𝐿𝑝𝑝
𝑣𝑣𝑃𝑃
𝑘𝑘−

𝐿𝐿𝑝𝑝−𝐷𝐷𝑝𝑝
𝑣𝑣𝑓𝑓

 denotes the interpolated space mean speed of vehicles 

traveling to the lane blockage location. 
 

As for the impacts of mandatory lane changes, let 𝜆𝜆𝑀𝑀𝑘𝑘  be the total number of mandatory 
lane changes needed for vehicles in the blocked lanes to make lane changes to the open lane at 
time interval 𝑘𝑘. For example, Figure 4-5(a) illustrates the three out of four lanes blockage 
scenario where vehicles in lane 1 need to execute three lane changes to lane 4. Likewise, two 
lane changes are needed for vehicles in lane 2, and one lane change for those in lane 3. As such, 
one can specify 𝜆𝜆𝑀𝑀𝑘𝑘  under such a lane blockage scenario to equal 6.  

 
The mandatory lane-changing frequency can be modeled by its inversely proportional 

relationship with the space mean speed of vehicles traveling to the lane blockage location (i.e., 
𝐷𝐷𝑝𝑝

𝐿𝐿𝑝𝑝
𝑣𝑣𝑃𝑃
𝑘𝑘−

𝐿𝐿𝑝𝑝−𝐷𝐷𝑝𝑝
𝑣𝑣𝑓𝑓

), because the low speed indicates a larger number of vehicles stuck in the blocked lanes 

and thus need to execute more mandatory lane changes to the open lanes. Hence, the impacts of 
mandatory lane changes on the discharge flow rate can be formulated as follow: 

𝑋𝑋2 = 𝐶𝐶 ×
𝜑𝜑𝑣𝑣𝑓𝑓

max

⎝

⎛𝜃𝜃,
𝐷𝐷𝑝𝑝

𝐿𝐿𝑝𝑝
𝑣𝑣𝑃𝑃𝑘𝑘

−
𝐿𝐿𝑝𝑝 − 𝐷𝐷𝑝𝑝
𝑣𝑣𝑓𝑓 ⎠

⎞

× 𝜆𝜆𝑀𝑀𝑘𝑘  

(14) 

where 0 < 𝜑𝜑 ≤ 1 is a parameter to be calibrated to compute the speed at the capacity. 
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Considering the impacts of discretionary lane changes, let 𝜆𝜆𝐷𝐷𝑘𝑘  be the total number of 
potential discretionary lane-changing types for vehicles in the open lanes to change from their 
current lanes to neighboring open lanes at time interval 𝑘𝑘. For example, Figure 4-5(b) illustrates 
the blockage of one out of four lanes incident scenario, where vehicles in lane-2 are likely to 
make a lane change to lane-3 to avoid the impedance by lane-changing vehicles from lane 1 to 
lane-2. Likewise, those in lane-3 are likely to change to lane-4. Hence, the parameter, 𝜆𝜆𝐷𝐷𝑘𝑘 , for this 
scenario is set to equal 2. 

 
The discretionary lane-changing frequency is known to be proportional to the speed 

difference between the target and subject lanes (Laval and Leclercq, 2008), because vehicles 
tend to make discretionary lane changes to the adjacent lane when they perceive a higher 
prevailing speed in that lane. Due to the limitation that the probe speed for each lane is not 
available, one can approximate the impacts of the discretionary lane changes on the discharge 
flow rate by using the speed difference between the speed at the capacity (i.e., 𝜑𝜑𝑣𝑣𝑓𝑓) and the 
estimated space mean speed of vehicles traveling to the lane blockage location (i.e., 𝐷𝐷𝑝𝑝

𝐿𝐿𝑝𝑝
𝑣𝑣𝑃𝑃
𝑘𝑘−

𝐿𝐿𝑝𝑝−𝐷𝐷𝑝𝑝
𝑣𝑣𝑓𝑓

), 

which is formulated as follow: 

𝑋𝑋3 = max 

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎡
𝜑𝜑𝑣𝑣𝑓𝑓 − max

⎝

⎜
⎛
𝜃𝜃,

𝐷𝐷𝑝𝑝
𝐿𝐿𝑝𝑝
𝑣𝑣𝑃𝑃𝑘𝑘

−
𝐿𝐿𝑝𝑝 − 𝐷𝐷𝑝𝑝
𝑣𝑣𝑓𝑓 ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

× 𝜌𝜌𝑗𝑗𝑅𝑅𝑚𝑚 × 𝜆𝜆𝐷𝐷𝑘𝑘 ,   0

⎭
⎪
⎬

⎪
⎫

 (15) 

 

 
FIGURE 4-5: Examples of Lane Changes Patterns under Different Lanes Blockage Scenarios 
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By using the above three major parts (Eqs. (13)-(15)) as independent variables and the 
discharge flow rate as the dependent variable, one can then construct the model for estimating 
the discharge flow rate with SVR (Cortes and Vapnik, 1995) to reflect their collective impacts 
and then proceed the parameter estimates with Eq. (17) using data from laboratory experiments 
or field observations as shown in Eq. (16):  

𝑞𝑞𝑑𝑑𝑘𝑘 = 𝑓𝑓𝑆𝑆𝑆𝑆𝑅𝑅(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3) (16) 

𝑓𝑓𝑆𝑆𝑆𝑆𝑅𝑅(𝐱𝐱) = � (𝛼𝛼𝑅𝑅 − 𝛼𝛼𝑅𝑅∗)𝒦𝒦(𝐱𝐱, 𝐱𝐱𝑅𝑅)
𝑁𝑁

𝑅𝑅=1
+ 𝑆𝑆 

(17) 

where 𝛼𝛼𝑅𝑅 and 𝛼𝛼𝑅𝑅∗ are the Lagrange multipliers; 𝒦𝒦(𝐱𝐱,𝐱𝐱𝑅𝑅) is the kernel function to transpose into 
high-dimensional feature space using the low-dimensional space data as the input without 
knowing the transformation. The calibration procedures for the discharge flow rate estimation 
model are presented in the numerical experiments. 
 
Flow Rate Estimation Models 

For highway segments without traffic sensors to approximate the above traffic queue 
impacts, one shall need some innovative way to estimate the upstream arriving traffic flows. The 
set of flow rate estimation models presented below is proposed for doing so, which are based 
mainly on archived volume data and real-time probe speed information. The core of such models 
is grounded in the following assumptions: 

• Every freeway segment’s traffic volume, during the same time of a day and day of a 
week, shall vary only within a reasonable range;  

• Depending on key characteristics and functions associated with the target highway (e.g., 
the day of a week, geographical locations, geometric conditions, etc.), its volume 
variation during a given time interval can be generally classified as three levels (i.e., low, 
medium, and high, based on the distribution of the available archived data; and 

• There exists a robust speed-flow rate relation for each classified level of traffic volume. 
 

Based on the above assumptions, the challenge for estimating traffic queue impacts 
during the period of incident response and management is to estimate the variation range of the 
arriving flow rate from upstream segments using the proper set of speed-flow relations. With 
such information, even probabilistic in nature, one can then proceed to approximate the queue 
impact distance with Eqs. (1)-(10). Hence, the model development process includes the 
following tasks: 1) constructing a discriminant function to estimate the probability distribution of 
a target highway segment’s traffic volume across the three classified levels during the incident 
duration, and 2) calibrating a set of speed-flow models for each of those three classified volumes.  

 
The development process, for example, first is to collect four-week data from 25 

automatic traffic recorders (ATRs) (MDOT, 2023) (see Figure 4-6) on the freeway networks in 
Maryland and their corresponding probe speeds over the same period, and then proceed with the 
following steps: 



 
 

40 
 
 

 
FIGURE 4-6: Locations of Automatic Traffic Recorders (ATRs) Deployed on Highways 

 
Step 1: The 24-hour volume data collected from each ATR are first divided into eight 
different time periods. 
 
Step 2: Classify the volume data associated with each time interval from all ATRs into 
three distinct levels using the Gaussian mixture density function.  By searching the local 
minima on the density function (see Figure 4-7), the volume data of all ATRs, for example, from 
6-9 A.M. can be classified into three levels (i.e., “Low”, “Medium”, and “High”). 

 
FIGURE 4-7: Gaussian Mixture Density of the Hourly Volume from 6-9 A.M. 

 
Step 3a: Develop a classification function to classify the probability of each time interval’s 
traffic flow rate into three preset volume levels.  Using the classified levels from Step 2 as the 
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dependent variable, one can apply the model by Breiman et al. (1984) to identify the relationship 
between the classified volume level for a highway segment over a given time interval and their 
associated characteristic variables such as the following variables: time of a day, day of the 
week, location (i.e., in the urban area or not), highway classifications (i.e., beltway, intercity 
highway, the highway between the major city and the residential area, major highway collector, 
and rural highway), AADT per lane, and the recorded probe speed over the same period.  
 

Note that due to the consequence of underestimating the traffic queue impacts, it is 
recommended that a higher weight be assigned to the underestimated errors (e.g., 50% as in 
Figure 4-8) in the classification process of computing the loss function. Figure 4-8 shows the 
classification results using the volume data from all ATRs between 6-9 A.M. as an example. 

 
FIGURE 4-8: Classification Results for Volume Data from all ATRs Between 6-9 A.M 

 
Step 3b: Develop a speed-flow relation for each classified level of volume.  Depending on the 
scattered pattern of all volume data during the same interval from all ATRs, it is essential that 
effective modeling concepts be used to reflect their relations with the solely available speed data 
over the same periods. 
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Taking the data from 6-9 A.M. as an example, because no obvious pattern can be 
observed for “Medium Level” and “Low Level” (see Figure 4-9), so one can take the following 
steps and apply the quantile analysis to produce the practically usable results: 

• Step 1: Determine the desired confidence interval (𝜃𝜃). 
• Step 2: Compute the upper bound (𝑞𝑞𝑈𝑈) and the lower bound (𝑞𝑞𝐿𝐿) of the estimated flow 

rate by selecting the interval [𝑀𝑀, 𝑆𝑆], where 0 ≤ 𝑀𝑀 < 𝑆𝑆 ≤ 1, that can produce the minimum 
difference between their associated flow rates. That is: 

Minimize 𝑞𝑞𝑈𝑈 − 𝑞𝑞𝐿𝐿 

(18) Subject to 𝑆𝑆 − 𝑀𝑀 = 𝜃𝜃 

𝑞𝑞𝑈𝑈 = 𝑄𝑄𝑞𝑞(𝑆𝑆) 

𝑞𝑞𝐿𝐿 = 𝑄𝑄𝑞𝑞(𝑀𝑀) 
 

where 𝑄𝑄𝑞𝑞(𝑥𝑥) denotes the 𝑥𝑥-percentile of the flow rate. 
 
For instance, the upper and the lower bounds of the flow rate associated with a 90% 

confidence interval (𝜃𝜃 = 0.9) for “Medium Level,” shown in Table 4-2, are computed by using 
(𝑀𝑀, 𝑆𝑆) = (0.045, 0.945) as they have the minimum flow difference. 

 
FIGURE 4-9: Speed-Flow Data for “Medium Level” and “Low Level” from 6-9 A.M. 

 
As for the volumes in “High Level,” their scattered plots exhibit a more complex speed-

flow relation (see Figure 4-10). Hence, the method of zone-based control boundaries is adopted to 
capture such relations and ensure that the control zone can cover the target percentage with the 
minimum area. A step-by-step description of the development procedures is summarized below: 

• Step 1: Determine the desired confidence interval (𝜃𝜃), that is, the target percentage of the 
volume data that the control zone should at least cover. 

• Step 2: Classify the volume data into two categories: undersaturated and oversaturated 
conditions. In this case, the speed of 60 mph is used as the boundary between the 
undersaturated and oversaturated conditions. 

• Step 3: Develop a set of speed-flow relations for such two conditions by identifying their 
zone-based control boundaries. 

For the undersaturated condition, the flow rate increases with the decrease in 
speed, but maintains a maximum value (i.e., capacity) when the speed is sufficiently low. 
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Hence, one can define the zone-based control boundaries for the undersaturated condition 
using three unknown points, i.e., (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), (60, 𝑦𝑦2) as illustrated in Figure 4-10, 
where: 𝑥𝑥1 defines the maximum speed of the control boundary; 𝑦𝑦1 defines the minimum 
flow rate under the undersaturated condition; 𝑥𝑥2 defines the maximum speed of the 
maximum flow rate; and 𝑦𝑦2 defines the maximum flow rate under the undersaturated 
condition. Based on these three points, one can use the following optimization to identify 
the best-fit control boundaries: 

Minimize 𝐴𝐴 
 

(19) 

Subject to 𝑥𝑥1 ≥ 𝑥𝑥2 ≥ 60 

𝑦𝑦2 ≥ 𝑦𝑦1 

𝐴𝐴 =
1
2

(𝑥𝑥2 + 𝑥𝑥1 − 120) × (𝑦𝑦2 − 𝑦𝑦1) 

𝑛𝑛𝐶𝐶 ≥ 𝜃𝜃 ∙ 𝑛𝑛𝑊𝑊 

where 𝐴𝐴 is the total area of the control zone for the undersaturated condition; and 𝑛𝑛𝐶𝐶 and 
𝑛𝑛𝑊𝑊 denote the total number of data points and the number of points inside the control 
zone, respectively. 

As for the oversaturated condition, since the flow rate decreases with the speed, 
one can also apply a zone-based to define its control boundaries using three unknown 
points, i.e., (60,𝑦𝑦3), (𝑥𝑥3,𝑦𝑦4), (𝑥𝑥3,𝑦𝑦5), where 𝑥𝑥3 defines the minimum speed; 𝑦𝑦3 defines 
the maximum flow rate under the oversaturated condition; 𝑦𝑦4 defines the maximum flow 
at the minimum speed; and 𝑦𝑦5 defines the minimum flow rate under the oversaturated 
condition. The formulations for such estimation are shown below: 

Minimize 𝐵𝐵 

(20) 

Subject to 𝑥𝑥3 < 60 

𝑦𝑦3 ≥ 𝑦𝑦4 ≥ 𝑦𝑦5 

𝐵𝐵 =
1
2

(𝑦𝑦4 + 𝑦𝑦3 − 2𝑦𝑦5) × (60 − 𝑥𝑥3) 

𝑛𝑛𝑤𝑤𝑅𝑅𝑅𝑅ℎ𝑅𝑅𝑛𝑛 ≥ 𝜃𝜃 ∙ 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡  

where 𝐵𝐵 is the total area of the control zone for the oversaturated condition. 
 
Taking the dataset from 6-9 A.M. as an example and let 𝜃𝜃 = 0.9, then one can have the 

optimal values for the set of variables, (𝑥𝑥1, 𝑥𝑥2,𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4,𝑦𝑦5) as 
(72, 64, 1250, 1900, 2000, 1400, 1300). Table 4-2 summarizes the speed-flow relations for 
“High Level” with this example of data. 
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FIGURE 4-10: Development of Speed-Flow Relation for “High Level” Volume from 6-9 A.M. 

 
TABLE 4-2: Speed-Flow Relations for all ATRs from 6-9 A.M. under Different Confidence levels 

Time Period Level of Flow Speed-flow relation 

6-9 AM  

High 

For 𝑣𝑣 > 60 𝑀𝑀𝑝𝑝ℎ 
90%  1250 < 𝑞𝑞 < 𝑀𝑀𝑀𝑀𝑥𝑥(1900,  1250 + (72 − 𝑣𝑣) × 81.25 
80%  1250 < 𝑞𝑞 < 𝑀𝑀𝑀𝑀𝑥𝑥(1750,  1250 + (71 − 𝑣𝑣) × 83.33 
70%  1300 < 𝑞𝑞 < 𝑀𝑀𝑀𝑀𝑥𝑥(1750,  1300 + (69 − 𝑣𝑣) × 150.0 
 
For 𝑣𝑣 ≤ 60 𝑀𝑀𝑝𝑝ℎ 
90%  1300 < 𝑞𝑞 < 1400 + (𝑣𝑣 − 10) × 12 
80%  1350 < 𝑞𝑞 < 1550 + (𝑣𝑣 − 10) × 5 
70%  1350 < 𝑞𝑞 < 1500 + (𝑣𝑣 − 10) × 5 

Medium 
90%  790 < 𝑞𝑞 < 1220 
80%  790 < 𝑞𝑞 < 1160 
70%  800 < 𝑞𝑞 < 1110 

Low 
90%  𝑞𝑞 < 685 
80%  𝑞𝑞 < 580 
70%  𝑞𝑞 < 520 

 
Figure 4-11 illustrates the flow chart for adopting the developed models to estimate the 

flow rate of a segment, given its probe speed and the key characteristics associated with the 
target highway segment. The segment of interest will be first categorized into its associated time 
period, and then classified into its corresponding volume level with the developed classification 
model. Lastly, a unique speed-flow relation will be adopted to estimate the upper and the lower 
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bounds of the flow rate based on the developed speed-flow relations. The obtained upper and 
lower bounds of the flow rate associated with the desired confidence interval can then be input to 
Eqs. (1)-(10) to compute the range of the resulting queue.  

 
FIGURE 4-11: The Procedures for Adopting the Flow Rate Estimation Model 

 
Operation of the Incident Queue Propagation Model 

With all principal components in R-IQP and model enhancements, Figure 4-12 illustrates 
the step-by-step procedures to predict the incident queue in a timely manner.  

 
The target of Step 1 to Step 4 is to identify the data availability and collect the available 

data. Step 5 and Step 6 record the incoming flow rates, speeds, and discharge flow dates when 
detector data are available. Otherwise, estimating the incoming traffic volume from Eqs. (1)-(10) 
and the discharge flow rate from Eqs. (13)-(17) if detector data are not available. Step 7 and Step 
14 aim to compute the mutual impacts between incoming flows and queue dynamics. Lastly, 
Step 15 checks if any new information is available for real-time updates of the predicted incident 
queue length. 
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FIGURE 4-12: Real-Time Operation Procedures to Predict the Incident Queue Length  



 
 

47 
 
 

4.3 NUMERICAL EXPERIMENTS 

The four sets of numerical experiments presented below are designed to first calibrate 
key parameters of all developed models, and then conduct extensive evaluations of their 
performance under both real-world and simulated scenarios:  

• Experiment 1: Estimating key parameters embedded in the discharge flow rate 
estimation model for a lane-blockage segment with extensive traffic data generated from 
a freeway traffic simulator that has been calibrated with the field data.  

• Experiment 2: Calibration of the proposed R-IQP system with a freeway traffic 
simulator that has been calibrated with the field data. 

• Experiment 3: Performance evaluation of the proposed R-IQP system using real-world 
data. 

• Experiment 4: Extensive evaluation of the proposed R-IQP system’s performance under 
various lane-blockage scenarios, traffic conditions, and incident natures with a well-
calibrated traffic simulator.  
 

This study has adopted VISSIM (PTV, 2023) to construct the traffic simulator. Notably, 
for the simulator to have sufficient fidelity to generate reliable traffic experimental scenarios, one 
must first calibrate its key parameters, designed to reflect observed traffic flow characteristics, 
including car-following and lane-changing patterns and their variations among the driving 
populations. The fidelity calibration process for the simulator involves field data collection from 
various incident scenarios, and recursive execution of Simultaneously Perturbation Stochastic 
Approximation (SPSA) (Spall, 1999) along with the Variation Reduction Technique (VRT) (Law 
and Kelton, 2007). As a detailed presentation of the calibration process and the adopted 
optimization algorithm is not the focus of this study, the results are thus reported elsewhere. 
 
Experiment 1: Calibration of the Discharge Flow Rate Estimation Model for Lane-
blockage Segments 

As shown in Eqs. (13)-(15), there are two parameters, 𝜃𝜃 and 𝜑𝜑, which need to be 
calibrated to ensure their reliability when only the speed information is available. The designs of 
experiments for parameter calibration are summarized as follows: 

• Nine lane blockage scenarios on a four-lane freeway (see Figure 4-13) 
• Six different input volumes (2000, 1800, 1600, 1400, and 1200 veh/hr/ln) 
• Five replications of one hour simulation with different random seeds for each simulated 

scenario, and a data collection interval of every 5 minutes 
• Total sample size: 3,240 samples in total (i.e., 9 × 6 × 5 × 12 = 3,240) for the 

calibration. 
 

Those two parameters embedded in Eqs. (13)-(15) were calibrated with the gradient 
decent method, while the hyperparameters for the SVR were based on the grid search method 
(𝛾𝛾 = 0.33, 𝜀𝜀 = 0.1, where 𝛾𝛾 defines how far the influence of a single training example can 
achieve and 𝜀𝜀 has a function to give a tolerable error of the regression model). The dataset for 
model training consists of 70% of all generated samples, and the remaining 30% of the data were 
used for performance evaluation.  
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Table 4-3 summarizes the calibration and test results, where the overall MAE on the 
training and the testing datasets are within the acceptable range, about 40 veh/hr and 39 veh/hr, 
respectively.  

 
FIGURE 4-13: The Different Lane Blockage Scenarios Adopted for the Calibration of the Discharge Flow Rate 

Estimation Model 
 

TABLE 4-3: The Calibration Results of the Discharge Flow Rate Estimation Model 

Experiment-1 (sample size: 3240) 
Calibrated 
parameter 

values 

Lane blockage 
Scenarios 

MAE (veh/hr) MAPE (%) 

Training Testing Training Testing 

𝜃𝜃 = 18.02 
(veh/hr) 
𝜑𝜑 = 0.84 

Overall 39.90 38.43 1.70 1.68 
𝜆𝜆 = 4, 𝜆𝜆𝐵𝐵 = 1 63.09 62.64 1.48 1.47 
𝜆𝜆 = 4, 𝜆𝜆𝐵𝐵 = 2 54.17 49.35 1.90 1.74 
𝜆𝜆 = 4, 𝜆𝜆𝐵𝐵 = 3 22.11 20.81 1.55 1.45 
𝜆𝜆 = 3, 𝜆𝜆𝐵𝐵 = 1 51.26 48.65 1.78 1.69 
𝜆𝜆 = 3, 𝜆𝜆𝐵𝐵 = 2 25.97 27.90 1.81 1.93 
𝜆𝜆 = 2, 𝜆𝜆𝐵𝐵 = 1 23.36 25.54 1.63 1.79 

Overall 38.43 1.67 
Note: 𝜆𝜆 denotes the total number of lanes and 𝜆𝜆𝐵𝐵 denotes the number of blocked lanes 
 
Experiment 2: Calibration of the Proposed R-IQP Model 

This set of experiments is designed to calibrate the parameters embedded in Eqs. (1)-(10) 
(i.e., 𝛼𝛼, 𝜅𝜅, 𝜏𝜏, and 𝛿𝛿𝐵𝐵). The network used for developing the simulator was based on the 41.5-mile 
segment of I-495 in Maryland (see Figure 4-14), and the experimental plan to generate the 
simulated traffic scenarios is summarized below: 
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• Two incident locations 
• Three lane blockage scenarios (i.e., 1 lane blocked, 2 lanes blocked, and 3 lanes blocked) 
• Three different incident clearance durations (i.e., 15, 30, and 60 minutes) 
• Five mainline traffic volumes ranging from 80% to 120% of the baseline volume 
• 90 samples in total (i.e., 2 × 3 × 3 × 5 = 90) for the model calibration 

 
Table 4-4 shows the set of optimal parameters used in the R-IQP and its performance 

statistics under those experimental scenarios. Note that the R-IQP has exhibited the expected 
accuracy and yielded an overall MAE of only 0.267 miles. Its performance, however, seems to 
degrade with an increase in the number of blocked lanes and the incident clearance duration. For 
example, under the scenario of a 3-lane blockage, the resulting MAE for incidents of 60 minutes 
is 0.835 (mile), higher than 0.185 miles for an incident of 30 minutes. 

 
FIGURE 4-14: Scope of Simulation Experiments for the Calibration of the Incident Queue Propagation Model 
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TABLE 4-4: The Calibration Results of the Incident Queue Propagation Model 

Experiment-2 (sample size: 90) 

Parameters Lane Blockage 
Status 

Lane Clearance 
Durations (mins) MAE (mile) RMSE 

𝛼𝛼 = 0.75 

𝜅𝜅 = 0.85 

𝜏𝜏 = 0.70 

𝛿𝛿3 𝐿𝐿𝑅𝑅𝑛𝑛𝐿𝐿 = 2.5 

𝛿𝛿2 𝐿𝐿𝑅𝑅𝑛𝑛𝐿𝐿 = 3.1 

𝛿𝛿1 𝐿𝐿𝑅𝑅𝑛𝑛𝐿𝐿 = 7.5 

3-lane blocked 

60 0.835 0.879 

30 0.185 0.205 

15 0.074 0.083 

2-lane blocked 

60 0.459 0.497 

30 0.172 0.197 

15 0.131 0.145 

1-lane blocked 

60 0.229 0.273 

30 0.151 0.172 

15 0.167 0.189 

Overall 0.267 0.375 

Note: 𝛿𝛿3 𝐿𝐿𝑅𝑅𝑛𝑛𝐿𝐿 denotes the parameter 𝛿𝛿𝐵𝐵 in Eqs. (7)-(9) under 3-lane blockage scenario 
 

Those models with optimally calibrated parameters will be adopted in the following 
experiments for the performance evaluation of the proposed R-IQP system.  
 
Experiment 3: Evaluation of the Proposed R-IQP Model with Field Data 

To assess the applicability of the proposed R-IQP model, this study has compared its 
performance with actual maximum queue lengths observed from the five incidents that occurred 
on I-495 in Maryland. Figure 4-15 shows a sample incident record with the time-varying queue 
and the probe speed along the freeway, which exhibits a maximum queue distance of 
approximately 2.5 to 3.0 miles. Note that since the surveillance system on I-495 in Maryland 
cannot provide reliable estimates of both the inflows and outflows, the aforementioned models 
for estimating arriving flow rate from upstream segments and the discharge flow rate out of the 
lane-blockage location were applied to produce such information. 

 
 Table 4-5 presents the predicted queues with the R-IQP system, where its upper and 
lower bounds are generated based on the upper and lower bounds of the estimated approaching 
flows associated with a 95% confidence interval (i.e., 𝜃𝜃 = 0.95 in Eqs. (18)-(20)). Notably, the 
mean absolute difference between the upper bounds of the actual and predicted queue lengths is 
0.36 miles and 0.4 miles for the difference between both lower bounds.  
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FIGURE 4-15: An Example of the Incident Query with Lane Status and Probe Speed Information 

 
TABLE 4-5: Evaluation Results of the R-IQP Using Real-World Incident Data 

Experiment-3 

Incident Location 
Lane 
Blockage 
Information 

Incident 
Duration 
(mins) 

Actual Queue 
Length (mile) 

Predicted 
Queue Length 
with 95% 
confidence 
(mile) 

I-495 Outer Loop At Exit 
34 Md 355 Wisconsin Ave 
(WB) 

3 out of 4 lanes 
blocked 30 3.6 – 4.3 3.5 – 4.4 

I-495 Outer Loop Prior To 
Exit 34 Md 355 Rockville 
Pike (WB) 

3 out of 4 lanes 
blocked 20 2.3 – 2.6 2.2 – 2.9 

I-495 Outer Loop At Exit 
35 I 270 Eisenhower Mem 
Hwy (WB) 

3 out of 4 lanes 
blocked 29 4.2 – 5.1 3.2 – 5.6 

I-495 Outer Loop At Exit 
34 Md 355 Rockville Pike 
(WB) 

2 out of 5 lanes 
blocked 18 2.5 – 3.6 2.3 – 3.2 

I-495 Outer Loop After 
Cedar Ln (WB) 

2 out of 4 lanes 
blocked 12 0.8 – 2.3 1.4 – 1.8 

 
Experiment 4: Evaluation of the Proposed R-IQP Model Using VISSIM Simulation 

To ensure the model’s performance beyond those limited real-world incident scenarios, this 
study has further conducted extensive laboratory analyses with the I-495 traffic simulator 
developed with VISSIM (PTV, 2023). The list of key variables used for generating 18 
experimental scenarios are listed below: 

• Three lane blockage scenarios (i.e., 1 lane blocked, 2 lanes blocked, 3 lanes blocked) 
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• Three incident durations (i.e., 15, 30, and 60 minutes) 
• Two mainline traffic volumes, ranging from 80% to 120% of the baseline volume 
• 18 samples in total (i.e., 3 × 3 × 2 = 18) for experimental analysis 

 
Table 4-6 shows the simulated and the predicted queue lengths under those 18 incident 

scenarios. Notably, for the predicted queue under Scenario 1 where the flow rate data is collected 
for each segment, their differences are consistently less than 1 mile, with the MAE of 0.31 miles. 
As for the predicted queue under Scenario 4, 95% confidence intervals of predicted queues can 
cover the actual queue lengths in 14 out of 18 incident scenarios, and the other four 
overestimates are with a mean difference of 0.14 miles.  
 

TABLE 4-6: The Evaluation Results of the Proposed Model with VISSIM Simulation 

Experiment-4 

 
Lane 

clearance 
duration 

(mins) 

Lane 
blockage 

status 

Input 
volume 
(veh/hr) 

Simulated 
queue 
(mile) 

Predicted 
queue under 
Scenario 1 

(mile)a 

Predicted queue with 
95% confidence 
under Scenario 4 

(mile)b 

1 

60 

3 out of 4 
lanes blocked 

6708 4.92 5.55 4.01 – 6.28 
2 6516 4.67 5.72 4.23 – 6.31 
3 2 out of 4 

lanes blocked 
6864 4.25 4.71 3.72 – 5.38 

4 7164 4.03 4.28 3.61 – 5.33 
5 1 out of 4 

lanes blocked 
7104 3.61 3.86 3.32 – 4.29 

6 7200 3.39 3.57 3.14 – 4.18 
7 

30 

3 out of 4 
lanes blocked 

6684 2.21 2.52 2.01 – 2.92 
8 6708 2.20 2.62 2.03 – 3.02 
9 2 out of 4 

lanes blocked 
6372 1.97 2.60 (2.11 – 3.03) c 

10 6600 2.03 2.07 1.67 – 2.48 
11 1 out of 4 

lanes blocked 
7020 1.65 2.08 (1.75 – 2.42)c 

12 6684 1.45 1.50 1.36 – 2.11 

13 

15 

3 out of 4 
lanes blocked 

3840 0.47 0.79 (0.62 – 0.95)c 
14 3816 0.50 0.80 (0.64 – 0.96)c 
15 2 out of 4 

lanes blocked 
3900 0.27 0.44 0.16 – 0.73 

16 4020 0.19 0.14 0.00 – 0.43 
17 1 out of 4 

lanes blocked 
4356 0.07 0.00 0.00 – 0.37 

18 3852 0.00 0.00 0.00 – 0.37 
Note: a The predicted queue is computed from the flow rate data recorded at each segment (i.e., Scenario1) 
b The predicted queue with 95% confidence is computed under the scenario where roadside sensors are not available 
(i.e., Scenario 4) 
c The predicted queue with 95% confidence cannot cover the simulated queue 
 

In brief, evaluation results from Experiment 3 and Experiment 4 show that the proposed 
R-IQP system can robustly reflect the mutual impacts between the queue propagation and the 
incoming flow from upstream segments. In addition, with the support from two supplemental 
models (i.e., discharge flow rate and arriving flow rate estimation model), the proposed R-IQP 
system has demonstrated its potential for use in practice to predict incident queue length with 
sufficient reliability under various data availability scenarios. 
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Chapter 5 
Estimating the Incident Impacts onto the Neighboring Local 

Networks with a Detour Rate Estimation System 
 

5.1 INTRODUCTION 
Recognizing that quality detector data may not always be available over most freeway 

segments, this chapter presents a model for detour rate estimation for impact assessment of time-
varying queues from a freeway incident onto its neighboring local traffic. This study has 
developed a Real-time Detouring Rate Estimation System (R-DRES), which employs the widely 
used real-time probe speed data as the sole input to a set of off-line calibrated speed-flow models 
to estimate the resulting traffic queue impacts to neighboring arterials. Such a low-cost but 
robust system enables the traffic management center to approximate mainline traffic’s time-
varying detour rate during the incident clearance period and evaluates the necessity of activating 
proper traffic control strategies. 

 
However, in developing the proposed system, one needs to overcome two major 

challenges. First, an extensive set of quality archived speed and volume data by day of the week 
and time of day shall be available for calibrating the robust speed-flow relations under various 
traffic conditions. Secondly, the applicability of the flow rates predicted with such models for the 
incident’s upstream segments during the clearance operations needs to be verified with a reliable 
mechanism, due to the day-to-day fluctuation of traffic volume, and differences in drivers’ 
decisions when encountering incidents. Whereas the first challenge has been addressed in 
Chapter 4, the remainder of this chapter will detail the core logic and modeling process 
developed to cope with the latter. 

 
Note that the development of the proposed R-DRES is based on the following three 

primary assumptions:  
• Reliable real-time probe speed data is available from various sources (e.g., RITIS, 

Google Maps, HERE); 
• Average probe speed represents the point speed at the subsegment center of the target 

highway; and 
• A set of off-line calibrated yet robust models for the speed-flow relations over different 

times of a day and days of a week under incident-free conditions are available. 
 
5.2 REAL-TIME DETOURING RATE ESTIMATION SYSTEM (R-DRES) 

Figure 5-1 illustrates the process of applying the proposed R-DRES for real-time 
detouring rate estimation. Specifically, with such a system, one can employ the real-time probe 
speed data to compute the difference in flow rates between the upstream and downstream 
segments of an interchange during the incident clearance operations and compare them with the 
same measurement during the same time period of a typical day but under incident-free 
condition. The proposed system features its self-evaluation mechanism that employs an 
embedded well-calibrated macroscopic traffic model to assess the quality of the flow rate data 
predicted with those speed-flow rate models calibrated off-line from archived data. The entire 
development process can be decomposed into the following major steps: 
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• Step 1: Collect the following two types of speed data: 
o The real-time speed data for both upstream and downstream segments of each 

interchange within the projected maximum queue impact range during the 
incident clearance period. 

o The archived speed data over the same time periods of day and days of a week for 
all these segments within the same projected spatial range but under incident-free 
scenarios. 

• Step 2: Smooth the collected real-time/archived speed data and perform necessary data 
imputation if needed. 

• Step 3: Estimate the flow rates for each time interval within the incident clearance period 
for those freeway segments within the incident’s maximum impact range, based on the 
processed real-time probe speed data and the available speed-flow models; conduct the 
same estimates for flow rates over the same segments and same time intervals with 
archived speed data under incident-free conditions. 

• Step 4: Assess the reliability of those flow rates estimated from the speed-flow models 
and perform the parameter update if deemed necessary. This step is to ensure that the 
estimated flow rates can reliably reflect the real-time traffic volume fluctuation. The 
activities executed in this entire step involve the applications of the following four major 
system components: 

o A macroscopic traffic flow model to capture the traffic dynamics of the freeway 
during the incident clearance operations; 

o An innovative mechanism that adopts the developed macroscopic traffic flow 
model to perform the quality assessment for the flow rate estimated from the set 
of speed-flow models; 

o An efficient algorithm for searching the parameters in the macroscopic traffic 
model that can best fit the real-time available speed information from probe 
vehicles; and 

o An update algorithm for the set of speed-flow models to update their key 
parameters in real-time when justified to do so. 

• Step 5: Enhance the robustness of the estimated flow rates for impact assessment with the 
rolling horizon concept.  

• Step 6: Compute the flow difference between the upstream and downstream segments of 
the roadway containing off-ramps (see Figure 5-2), with the following expressions: 

𝑄𝑄𝑚𝑚
𝑘𝑘′, ℎ(𝑘𝑘) = 𝑞𝑞�𝑅𝑅−1

𝑘𝑘′, ℎ(𝑘𝑘) − 𝑞𝑞�𝑅𝑅+1
𝑘𝑘′, ℎ(𝑘𝑘)  (1) 

𝑄𝑄�𝑚𝑚
𝑘𝑘′, ℎ(𝑘𝑘) = 𝑞𝑞�𝑅𝑅−1

𝑘𝑘′, ℎ(𝑘𝑘) − 𝑞𝑞�𝑅𝑅+1
𝑘𝑘′, ℎ(𝑘𝑘)  (2) 

where 𝑄𝑄𝑚𝑚
𝑘𝑘′, ℎ(𝑘𝑘) denotes the real-time estimated difference in traffic volumes between the 

upstream and downstream segments of interchange 𝑀𝑀 from time interval 𝑘𝑘 − ℎ to time 
interval 𝑘𝑘, measured at time interval 𝑘𝑘′; and 𝑄𝑄�𝑚𝑚

𝑘𝑘′, ℎ(𝑘𝑘) denotes the historical flow 
difference during the same but incident-free period (i.e., estimated from the archived 
speed). 

• Step 7: Compute the detouring volume rates based on the flow rate difference between 
the one measured in real-time and the same measurement but during the incident-free 
periods, as shown in Eq. (3). 
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𝐷𝐷𝐷𝐷𝑚𝑚
𝑘𝑘′, ℎ(𝑘𝑘) = 𝑄𝑄𝑚𝑚

𝑘𝑘′, ℎ(𝑘𝑘) − 𝑄𝑄�𝑚𝑚
𝑘𝑘′, ℎ(𝑘𝑘)  (3) 

where 𝐷𝐷𝐷𝐷𝑚𝑚
𝑘𝑘′, ℎ(𝑘𝑘) denotes the real-time detouring rate at interchange 𝑀𝑀 from time interval 

𝑘𝑘 − ℎ to time interval 𝑘𝑘, measured at time interval 𝑘𝑘′ 

 
FIGURE 5-1: The Process for Detouring Rate Estimation with an Assessment Function From a Well Calibrated 

Macroscopic Traffic Flow Model 
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FIGURE 5-2: Graphical Illustration of a Freeway Segment for Estimating Incident Impacts on the Detouring Rate 

 
The following sections will first detail the methodology proposed to assess the 

applicability of the estimated flow rates and the mechanism for an update of the speed flow 
models (i.e., Step 4 in Figure 5-1), followed by a brief description of the flow rate reliability 
enhancement by adopting rolling horizon concept (i.e., Step 5 in Figure 5-1). Table 5-1 presents 
the key variables used in the system development. 
 

TABLE 5-1: Key Variables used in the Development of the Proposed R-DRES 

Notation Definition 
𝑣𝑣 Segment index 
𝑀𝑀 Interchange index 
𝑘𝑘 Time interval index 
ℎ Number of time steps of each volume difference estimation 

𝑣𝑣𝑅𝑅
𝑘𝑘′, 1(𝑘𝑘) 

Processed real-time probe speed of segment 𝑣𝑣 for time interval 𝑘𝑘 − 1, collected at time 
interval 𝑘𝑘′  

𝑣𝑣�𝑅𝑅
𝑘𝑘, 1(𝑘𝑘) Estimated Speed of segment 𝑣𝑣 for time interval 𝑘𝑘-1, estimated at time interval 𝑘𝑘′ from 

enhanced METANET 

𝑞𝑞𝑅𝑅
𝑘𝑘′, 𝑅𝑅(𝑘𝑘) 

Estimated real-time flow rate of segment 𝑣𝑣 from time interval 𝑘𝑘 − 𝑀𝑀 to time interval 𝑘𝑘, 
measured at time interval 𝑘𝑘′ 

𝑞𝑞�𝑅𝑅
𝑘𝑘′, 𝑅𝑅(𝑘𝑘) 

Estimated real-time Flow rate of segment 𝑣𝑣 from time interval 𝑘𝑘 − 𝑀𝑀 to time interval 𝑘𝑘 
with higher reliability, measured at time interval 𝑘𝑘′ 

 
Methodology for Assessing the Applicability of the Flow Rates Estimated from Off-Line 
Models  

Conceivably, with a reliable speed-flow relation, the real-time and historical flow rate 
difference between the upstream and downstream of the interchange could be estimated 
intuitively with the available speed data. However, depending on the traffic impacts by an 
incident and the nature of day-to-day volume fluctuation, the flow rate information from off-line 
calibrated models may not always be sufficiently robust to capture the actual flow rates over all 
roadway segments plagued by the incident-incurred queues, and may consequently affect the 
reliability of the estimated impacts on the detour rate.  

 
Figure 5-3 illustrates the operational flows of this module, including activities to be 

executed in each step. It leverages a second-order traffic flow model as a quality control 
mechanism that integrates with an assessment and update algorithm to ensure that the errors of 
the estimated flow rate always lie within an acceptable range. In this study, the METANET 
model (Messmer and Papageorgiou, 1990) has been adopted as the traffic flow model for 
verifying the speed-flow dynamics due to its efficiency and flexibility under various traffic 
conditions. The core logic for assessing the predicted flow rates can be specified as follows: 
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• Step 4-1: Obtain 𝑞𝑞𝑅𝑅
𝑘𝑘, 1(𝑘𝑘)  estimated by the off-line developed speed-flow models. 

• Step 4-2: Apply 𝑞𝑞𝑅𝑅
𝑘𝑘, 1(𝑘𝑘) and 𝑣𝑣𝑅𝑅

𝑘𝑘, 1(𝑘𝑘) to METANET, and search for the METANET 
parameters that can minimize the estimation error for 𝑣𝑣𝑅𝑅

𝑘𝑘+1, 1(𝑘𝑘 + 1) – the difference 
between the speed detected by the probing vehicles and that projected with METANET. 

• Step 4-3: Evaluate whether the estimation error is smaller than a pre-specified threshold, 
and proceed to the estimation for the next interval; otherwise, go to Step 4-4. 

• Step 4-4: Estimate the reasonable range of the flow rate, using METANET with a pre-
specified set of parameters. 

• Step 4-5: Update the speed flow model using the flow rate estimated in Step 4-4 for use 
in future intervals. 
 

 
FIGURE 5-3: Procedures of the Flow Rate Assessment and Update of the Speed-Flow Model 

 
The above process is grounded in the notion that using the probe speed and flow rate of 

time interval k (estimated by the off-line speed-flow models) as the input to METANET, its 
projected speed for interval k+1 should be within an acceptable range of the probing speed for 
the same time interval if the input flow rate data from the speed-flow models have the expected 
reliability. Notably, the output, such as flow rate and speed, from METANET may vary with the 
selected set of parameters. Hence, given the feasible upper and lower bounds for each of the 
METNET’s key parameters, one can conclude the reliability of the flow rate predicted by the 
speed-flow rate models, as long as there exist a set of such parameters that enables METANT to 
produce the predicted speed that is within the acceptable range of the actual speed from probe 
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vehicles. To execute the above assessment process, the proposed system needs to have the 
following models: 

• An enhanced version of METANET model that can better reflect the freeway’s traffic 
evolution at the freeway interchange under incident scenarios; 

• A searching algorithm to find the set of METANET parameters that can minimize the 
estimation error of the speed predicted for interval k+1; 

• Specification of the reasonable ranges of parameters in the searching algorithm for 
METANET to robustly replicate the incident conditions on the target roadway segment. 

 
Enhanced METANET Model 

The speed evolution dynamics in the METANET by Messmer and Papageorgiou (1990), 
is shown in Eq. (4): 

𝑣𝑣�𝑅𝑅
𝑘𝑘+1,1(𝑘𝑘 + 1) = 𝑣𝑣𝑅𝑅

𝑘𝑘,1(𝑘𝑘) +
𝐶𝐶
𝜏𝜏 �
𝐷𝐷�𝜌𝜌𝑅𝑅

𝑘𝑘,1(𝑘𝑘)� − 𝑣𝑣𝑅𝑅
𝑘𝑘,1(𝑘𝑘)� +

𝐶𝐶
𝐿𝐿𝑅𝑅
𝑣𝑣𝑅𝑅
𝑘𝑘,1(𝑘𝑘)�𝑣𝑣𝑅𝑅−1

𝑘𝑘,1 (𝑘𝑘) − 𝑣𝑣𝑅𝑅
𝑘𝑘,1(𝑘𝑘)�

− 𝜙𝜙
𝐶𝐶
𝐿𝐿𝑅𝑅
�𝜌𝜌𝑅𝑅+1

𝑘𝑘,1 (𝑘𝑘) − 𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘)�

𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘) + 𝜅𝜅

 
 (4) 

Note that the convection term in Eq. (4), 𝐶𝐶
𝐿𝐿𝑖𝑖
𝑣𝑣𝑅𝑅(𝑘𝑘)[𝑣𝑣𝑅𝑅−1(𝑘𝑘) − 𝑣𝑣𝑅𝑅(𝑘𝑘)], is to reflect the continuity 

of traffic conditions between two consecutive freeway segments that are discretized for 
convenience of model computation. Likewise, the anticipation term, 𝜙𝜙 𝐶𝐶

𝐿𝐿𝑣𝑣

[𝜌𝜌𝑣𝑣+1,(𝑘𝑘)−𝜌𝜌𝑣𝑣(𝑘𝑘)]

𝜌𝜌𝑣𝑣(𝑘𝑘)+𝜅𝜅
, is proposed 

to capture the perceivable impacts of the downstream segment’s traffic conditions–such as 
congestion–on the speed of drivers in the current segment.  

 
Despite its effectiveness on most freeway segments, the above equation could not fully 

capture the impact on speed due to the following three traffic dynamics that are specifically 
prominent at the interchange area upstream of the incident site: 1) the change of speed due to the 
queue propagation from the downstream; 2) the speed reduction due to the weaving behavior at 
the interchange; and 3) the speed reduction due to the lane changes prior to the lane blockage 
location. Hence, this study proposes an enhanced METANET that can better fit the traffic 
condition both at the interchange area and during the incident by addressing the above three 
dynamics, as formulated in Eqs. (5)-(7). 

𝑣𝑣�𝑅𝑅
𝑘𝑘+1, 1(𝑘𝑘 + 1) = min�𝑣𝑣𝑚𝑚,𝑣𝑣𝑅𝑅

𝑘𝑘, 1(𝑘𝑘) +
𝐶𝐶 ∙ 𝑣𝑣𝑣𝑣

𝑘𝑘, 1(𝑘𝑘)
𝐿𝐿𝑅𝑅

𝜔𝜔(∙) − 𝜙𝜙
𝐶𝐶
𝐿𝐿𝑅𝑅
�𝜌𝜌𝑅𝑅+1

𝑘𝑘,1 (𝑘𝑘)− 𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘)�

𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘) + 𝜅𝜅

−
𝜑𝜑𝐶𝐶
𝐿𝐿𝑅𝑅𝜆𝜆𝑅𝑅

Δ𝜆𝜆 × 𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘)

𝜌𝜌𝑐𝑐𝑟𝑟𝑀𝑀𝐷𝐷
𝑣𝑣𝑅𝑅
𝑘𝑘, 1(𝑘𝑘)2 −

𝜃𝜃𝐶𝐶 ∙ 𝑣𝑣𝑅𝑅
𝑘𝑘, 1(𝑘𝑘)

𝐿𝐿𝑅𝑅𝜆𝜆𝑅𝑅�𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘) + 𝜅𝜅�

𝜓𝜓(∙)� 

 (5) 

𝜔𝜔(∙) = �
�𝑣𝑣𝑅𝑅+1

𝑘𝑘, 1(𝑘𝑘)− 𝑣𝑣𝑅𝑅
𝑘𝑘, 1(𝑘𝑘)�

�𝑣𝑣𝑅𝑅−1
𝑘𝑘, 1(𝑘𝑘)− 𝑣𝑣𝑅𝑅

𝑘𝑘, 1(𝑘𝑘)�
   

     𝑣𝑣𝑓𝑓 𝑣𝑣𝑅𝑅−1
𝑘𝑘, 1(𝑘𝑘)− 𝑣𝑣𝑅𝑅+1

𝑘𝑘, 1(𝑘𝑘) > 𝑀𝑀 𝐴𝐴𝐴𝐴𝐷𝐷 𝑣𝑣𝑅𝑅−1
𝑘𝑘, 1(𝑘𝑘)− 𝑣𝑣𝑅𝑅

𝑘𝑘, 1(𝑘𝑘) > 𝑆𝑆
𝑂𝑂𝑆𝑆ℎ𝑀𝑀𝑟𝑟𝑤𝑤𝑣𝑣𝑠𝑠𝑀𝑀

 (6) 

𝜓𝜓(∙) = �
max�0, max�0,  𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑅𝑅

𝑘𝑘, 1(𝑘𝑘)� ∙ 𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘) − 𝜏𝜏�   

max�0, max�0,𝑣𝑣𝑅𝑅−1
𝑘𝑘, 1(𝑘𝑘)− 𝑣𝑣𝑅𝑅

𝑘𝑘, 1(𝑘𝑘)� ∙ 𝜌𝜌𝑅𝑅
𝑘𝑘,1(𝑘𝑘)�

   
𝑣𝑣𝑓𝑓 𝑣𝑣𝑅𝑅−1

𝑘𝑘, 1(𝑘𝑘)− 𝑣𝑣𝑅𝑅
𝑘𝑘, 1(𝑘𝑘) > 𝑆𝑆

𝑂𝑂𝑆𝑆ℎ𝑀𝑀𝑟𝑟𝑤𝑤𝑣𝑣𝑠𝑠𝑀𝑀
 (7) 
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In Eq. (5), the term 𝐶𝐶∙𝑣𝑣𝑣𝑣
𝑘𝑘, 1(𝑘𝑘)
𝐿𝐿𝑖𝑖

𝜔𝜔(∙) models the change in the speed due to the queue 
propagation from downstream. Conceivably, when the queue from downstream has reached 
segment i+1, then the speed at segment i+1 would be impacted more significantly by such a 
speed than by that at segment i-1 as expressed in Eq. (6), where a and b are thresholds used to 
determine the presence of the queue from the downstream segment. 

 

The term 𝜑𝜑𝐶𝐶
𝐿𝐿𝑖𝑖𝜆𝜆𝑖𝑖

Δ𝜆𝜆×𝜌𝜌𝑖𝑖
𝑘𝑘,1(𝑘𝑘)

𝜌𝜌𝑐𝑐𝑐𝑐𝐿𝐿𝐷𝐷
𝑣𝑣𝑅𝑅
𝑘𝑘,1(𝑘𝑘)2 is specified to model the speed reduction due to the lane 

changes taking place ahead of the lane blockage location, where 𝐷𝐷 denotes the distance from the 
incident location to the center of that probe segment (See Figure 5-1) and 𝜑𝜑 is the model parameter 
for the calibration. This term is inherited from the work by Messmer and Papageorgiou (1990) but 

refines it by further considering the distance to the incident location. The term 𝜃𝜃𝐶𝐶∙𝑣𝑣𝑖𝑖
𝑘𝑘, 1(𝑘𝑘)

𝐿𝐿𝑖𝑖𝜆𝜆𝑖𝑖�𝜌𝜌𝑖𝑖
𝑘𝑘,1(𝑘𝑘)+𝜅𝜅�

𝜓𝜓(∙)  

is an optional term applied to the interchange segment that captures the speed reduction due to the 
weavings at the interchange, where 𝜏𝜏 denotes the threshold of the on/off ramp flows to have a 
significant impact on the speed due to weaving activities; and 𝜃𝜃 is a calibrated parameter. Such 
speed reduction would only be accounted for when the approaching speed is significantly higher, 
as shown in Eq. (7), where c denotes a threshold over which the weaving activities are viewed to 
have a significant impact on the mainline’s speed; and 𝑣𝑣𝑓𝑓 denotes the free-flow speed. 

 
Searching Algorithms for METANET Parameters 

As shown in Figure 5-3, the flow rate estimated based on the probe speed will be verified 
with the enhanced METANET model. Specifically, the flow rate assessment criterion in this 
study is whether the METANET model, using a flow rate estimated from the speed-flow model 
at time interval k, can produce a speed value for time interval k+1 that is close to the ground 
truth, i.e., observed probe speed. Considering that the METANET model has three major 
parameters to calibrate, (i.e., 𝜙𝜙,  𝜅𝜅,  𝜑𝜑). As such, the flow rate assessment is conducted by 
searching for a set of parameters that can minimize the difference between METANET-produced 
speed and the speed from probe vehicles. Such a search process can be done by solving the 
following optimization problem (OP): 
OP 1: 

𝑀𝑀𝑣𝑣𝑛𝑛 �
𝑣𝑣�𝑅𝑅
𝑘𝑘+1, 1(𝑘𝑘 + 1) − 𝑣𝑣𝑅𝑅

𝑘𝑘+1, 1(𝑘𝑘 + 1)
𝑣𝑣𝑅𝑅
𝑘𝑘+1, 1(𝑘𝑘 + 1)𝑅𝑅

 

S.t.  
Eqs. (5)-(7) 

𝜙𝜙𝐿𝐿 ≤ 𝜙𝜙 ≤ 𝜙𝜙𝑈𝑈 

𝜅𝜅𝐿𝐿 ≤ 𝜅𝜅 ≤ 𝜅𝜅𝑈𝑈 

𝜑𝜑𝐿𝐿 ≤ 𝜑𝜑 ≤ 𝜑𝜑𝑈𝑈 
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where 𝑣𝑣�𝑅𝑅
𝑘𝑘+1, 1(𝑘𝑘 + 1) denotes the speed computed from METANET; 𝑣𝑣𝑅𝑅

𝑘𝑘+1, 1(𝑘𝑘 + 1) denotes the 
probe speed; and 𝜙𝜙𝐿𝐿 ,𝜙𝜙𝑈𝑈,𝜑𝜑𝐿𝐿 ,𝜑𝜑𝑈𝑈 , 𝜅𝜅𝐿𝐿 ,𝜅𝜅𝑈𝑈 denote the prespecified lower and upper bounds for the 
three parameters. 
 

Note that under OP 1, those METANET parameters are decision variables to be 
optimized with the given predicted flow rate from the speed-flow models and the actual speed 
from the probing vehicles. If the objective value for OP 1 is greater than a prespecified threshold 
𝜔𝜔, it indicates that METANET–within the feasible range of its parameters and based on the flow 
rate obtained from the speed-flow model–fails to generate a reliable speed estimate consistent 
with that from the real-time detected speed by the probing vehicles. Thus, the set of speed-flow 
models needs to be updated with any viable update algorithm prior to its use for subsequent time 
intervals. 

 
Note that OP 1 is highly non-linear and could not be solved with traditional linear 

programming solution algorithms. Hence, this study applies the method of Stochastic Ranking 
for Constrained Evolutionary Optimization (Runarsson and Yao, 2000) to perform the parameter 
search. Ten initial solutions for each optimization case have been randomly generated to avoid 
being trapped in a local optimum.  

 
To ensure that the searching process is sufficiently comprehensive, and the results are 

robust, OP 1 will be executed seven times, each treating different parameters as variable(s) and 
the other parameters unchanged. More specifically, those seven search scenarios are defined as 
follows: 
• Scenario 1: only parameter 𝜙𝜙 is the decision variable and keep the remaining two as 

constants. 
• Scenario 2: only parameter 𝜅𝜅 is the decision variable and keep the remaining two as 

constants. 
• Scenario 3: only parameter 𝜑𝜑 is the decision variable and keep the remaining two as 

constants. 
• Scenario 4: Parameters 𝜙𝜙 and 𝜅𝜅 are the decision variables and keep parameter 𝜑𝜑 as constant. 
• Scenario 5: Parameters 𝜙𝜙 and 𝜑𝜑 are the decision variables and keep parameter 𝜅𝜅 as constant. 
• Scenario 6: Parameters 𝜅𝜅 and 𝜑𝜑 are the decision variables and keep parameter 𝜙𝜙 as constant. 
• Scenario 7: Parameters 𝜙𝜙, 𝜅𝜅, and 𝜑𝜑 are all treated as decision variables. 

 
 Figure 5-4 demonstrates such a comprehensive searching process for all seven 

optimization scenarios, where 𝜔𝜔 denotes a prespecified threshold for the acceptable error. If the 
value of the objective function for each seven of optimization scenarios is less than such a 
prespecified threshold, then it can be concluded that the flow rate estimated from the speed-flow 
model is acceptable. Note that the optimal solutions from scenarios 1-3 can serve as references 
for the initial solutions for scenarios 4-7 to reduce the likelihood of the search being trapped in 
local optima. Specifically, for each parameter, a value within its specified range and closest to 
the optimal solutions from scenarios 1-3 should be selected for the generation of initial solutions 
in scenarios 4-7. For example, if the optimal value for parameter 𝜙𝜙 from Scenario 1 is between 
the pre-specified range for Scenario 4, such an optimal value should be adopted in one of the 
initial solutions for Scenario 4; otherwise, the upper or lower bound of 𝜙𝜙 for Scenario 4 should 
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be adopted, depending on whether the optimal value from Scenario 1 is larger or smaller than the 
specified range. 

 
FIGURE 5-4: The Searching Process to Verify the Flow Rate Estimated with the Speed-Flow Model 

 
Identification of a Reasonable Range for Each METANET Parameter  

The acceptable ranges for each parameter should vary based on the number of parameters 
specified as decision variables and their designated functions. For example, let 𝜙𝜙∗, 𝜅𝜅∗, and 𝜑𝜑∗ be 
the optimal values of the parameters 𝜙𝜙, 𝜅𝜅, and 𝜑𝜑, respectively, which were calibrated by 
minimizing the Mean Absolute Percentage Error (MAPE) using real-world data. Then, the 
acceptable ranges under each scenario for each parameter can be pre-defined with the following 
procedures:  
• Step 1: Determine the tolerance level, denoted by 𝛿𝛿, that represents the allowable increase of 

MAPE in percentage caused by a change in the parameter’s value; 
• Step 2: Conduct sensitivity analysis to identify the maximum change, in percentage, for each 

parameter that can keep the resulting MAPE within the tolerable range of 𝛿𝛿%. The obtained 
upper and lower bounds, in percentage, for parameter 𝜙𝜙 are denoted as 𝛼𝛼− and 𝛼𝛼+, 
respectively. Likewise, 𝛽𝛽− and 𝛽𝛽+ are for parameter 𝜅𝜅; 𝛾𝛾− and 𝛾𝛾+ are for parameter 𝜑𝜑; 

• Step 3: Compute the reasonable upper and lower bounds for each parameter under Scenarios 
1-3. Let 𝛩𝛩𝑘𝑘𝐿𝐿(𝛩𝛩𝑘𝑘𝑈𝑈) be the lower (upper) bound of parameter 𝛩𝛩 for optimization Scenario k, 
where 𝛩𝛩 ∈ (𝜙𝜙, 𝜅𝜅,𝜑𝜑), one can specify the feasible upper and the lower bounds for the three 
major parameters as follows: 

𝜙𝜙1𝐿𝐿 = 𝜙𝜙 �1 −
𝛼𝛼−

100
� , 𝜙𝜙1𝑈𝑈 = 𝜙𝜙�1 +

𝛼𝛼+

100
� 

𝜅𝜅1𝐿𝐿 = 𝜅𝜅 �1 −
𝛽𝛽−

100
� , 𝜅𝜅1𝑈𝑈 = 𝜅𝜅 �1 +

𝛽𝛽+

100
� 
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𝜑𝜑1𝐿𝐿 = 𝜑𝜑 �1 −
𝛾𝛾−

100
� , 𝜑𝜑1𝑈𝑈 = 𝜑𝜑�1 +

𝛾𝛾+

100
� 

• Step 4: Search the upper and lower bounds for each parameter under scenarios 4-7 with an 
optimization process. For example, one can identify the upper and the lower bounds for 
parameters 𝜙𝜙 and 𝜅𝜅 under Scenario 4 with the following formulations for optimization (OP 
2): 
OP 2: 

𝑀𝑀𝑀𝑀𝑥𝑥    
𝜙𝜙4𝑈𝑈 − 𝜙𝜙4𝐿𝐿

𝜙𝜙∗ ×
𝜅𝜅4𝑈𝑈 − 𝜅𝜅4𝐿𝐿

𝜅𝜅∗
 

S.t. 

�1 +
𝛿𝛿(𝜙𝜙4𝑈𝑈 − 𝜙𝜙∗)

𝛼𝛼+𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅4𝑈𝑈 − 𝜅𝜅∗)

𝛽𝛽+𝜅𝜅∗
� ≤ �1 +

𝛿𝛿
100

� 

�1 +
𝛿𝛿(𝜙𝜙∗ − 𝜙𝜙4𝐿𝐿)

𝛼𝛼−𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅∗ − 𝜅𝜅4𝐿𝐿)
𝛽𝛽−𝜅𝜅∗

� ≤ �1 +
𝛿𝛿

100
� 

�1 +
𝛿𝛿(𝜙𝜙4𝑈𝑈 − 𝜙𝜙∗)

𝛼𝛼+𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅∗ − 𝜅𝜅4𝐿𝐿)
𝛽𝛽−𝜅𝜅∗

� ≤ �1 +
𝛿𝛿

100
� 

�1 +
𝛿𝛿(𝜙𝜙∗ − 𝜙𝜙4𝐿𝐿)

𝛼𝛼−𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅4𝑈𝑈 − 𝜅𝜅∗)

𝛽𝛽+𝜅𝜅∗
� ≤ �1 +

𝛿𝛿
100

� 

where the objective of OP 2 is to maximize the combined allowable range for 𝜙𝜙 and 𝜅𝜅. Each 
constraint in OP 2 aims to ensure that as long as both parameters vary within the specified 
range, the resulting increase in MAPE should not exceed 𝛿𝛿%. For example, �1 + 𝛿𝛿�𝜙𝜙4𝑈𝑈−𝜙𝜙∗�

𝛼𝛼+𝜙𝜙∗
� 

denotes the expected change in the computed speed when increasing 𝜙𝜙, and the product of 
two such terms indicate the expected compound change resulting from the adjustments of 
such two parameters. By the same token, one can develop similar formulations to obtain the 
acceptable parameter ranges for scenarios 5-6. 
 

For Scenario 7, involving three parameters, one can specify the formulations for the 
search of their bounds as follows:  
OP 3: 

𝑀𝑀𝑀𝑀𝑥𝑥    
𝜙𝜙7𝑈𝑈 − 𝜙𝜙7𝐿𝐿

𝜙𝜙∗ ×
𝜅𝜅7𝑈𝑈 − 𝜅𝜅7𝐿𝐿

𝜅𝜅∗
×
𝜑𝜑7𝑈𝑈 − 𝜑𝜑7𝐿𝐿

𝜑𝜑∗  

S.t. 

�1 +
𝛿𝛿(𝜙𝜙7𝑈𝑈 − 𝜙𝜙∗)

𝛼𝛼+𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅7𝑈𝑈 − 𝜅𝜅∗)

𝛽𝛽+𝜅𝜅∗
� × �1 +

𝛿𝛿(𝜑𝜑7𝑈𝑈 − 𝜑𝜑∗)
𝛾𝛾+𝜑𝜑∗ � ≤ �1 +

𝛿𝛿
100

� 

�1 +
𝛿𝛿(𝜙𝜙∗ − 𝜙𝜙7𝐿𝐿)

𝛼𝛼−𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅∗ − 𝜅𝜅7𝐿𝐿)
𝛽𝛽−𝜅𝜅∗

� × �1 +
𝛿𝛿(𝜑𝜑∗ − 𝜑𝜑7𝐿𝐿)

𝛾𝛾−𝜑𝜑∗ � ≤ �1 +
𝛿𝛿

100
� 

�1 +
𝛿𝛿(𝜙𝜙7𝑈𝑈 − 𝜙𝜙∗)

𝛼𝛼+𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅∗ − 𝜅𝜅7𝐿𝐿)
𝛽𝛽−𝜅𝜅∗

� × �1 +
𝛿𝛿(𝜑𝜑∗ − 𝜑𝜑7𝐿𝐿)

𝛾𝛾−𝜑𝜑∗ � ≤ �1 +
𝛿𝛿

100
� 
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�1 +
𝛿𝛿(𝜙𝜙∗ − 𝜙𝜙7𝐿𝐿)

𝛼𝛼−𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅7𝑈𝑈 − 𝜅𝜅∗)

𝛽𝛽+𝜅𝜅∗
� × �1 +

𝛿𝛿(𝜑𝜑∗ − 𝜑𝜑7𝐿𝐿)
𝛾𝛾−𝜑𝜑∗ � ≤ �1 +

𝛿𝛿
100

� 

�1 +
𝛿𝛿(𝜙𝜙∗ − 𝜙𝜙7𝐿𝐿)

𝛼𝛼−𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅∗ − 𝜅𝜅7𝐿𝐿)
𝛽𝛽−𝜅𝜅∗

� × �1 +
𝛿𝛿(𝜑𝜑7𝑈𝑈 − 𝜑𝜑∗)

𝛾𝛾+𝜑𝜑∗ � ≤ �1 +
𝛿𝛿

100
� 

�1 +
𝛿𝛿(𝜙𝜙7𝑈𝑈 − 𝜙𝜙∗)

𝛼𝛼+𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅7𝑈𝑈 − 𝜅𝜅∗)

𝛽𝛽+𝜅𝜅∗
� × �1 +

𝛿𝛿(𝜑𝜑∗ − 𝜑𝜑7𝐿𝐿)
𝛾𝛾−𝜑𝜑∗ � ≤ �1 +

𝛿𝛿
100

� 

�1 +
𝛿𝛿(𝜙𝜙7𝑈𝑈 − 𝜙𝜙∗)

𝛼𝛼+𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅∗ − 𝜅𝜅7𝐿𝐿)
𝛽𝛽−𝜅𝜅∗

� × �1 +
𝛿𝛿(𝜑𝜑7𝑈𝑈 − 𝜑𝜑∗)

𝛾𝛾+𝜑𝜑∗ � ≤ �1 +
𝛿𝛿

100
� 

�1 +
𝛿𝛿(𝜙𝜙∗ − 𝜙𝜙7𝐿𝐿)

𝛼𝛼−𝜙𝜙∗ � × �1 +
𝛿𝛿(𝜅𝜅7𝑈𝑈 − 𝜅𝜅∗)

𝛽𝛽+𝜅𝜅∗
� × �1 +

𝛿𝛿(𝜑𝜑7𝑈𝑈 − 𝜑𝜑∗)
𝛾𝛾+𝜑𝜑∗ � ≤ �1 +

𝛿𝛿
100

� 

 
Update of Speed Flow Models 

Should the assessment process (Step 4-3 in Figure 5-3) conclude that the flow rate 
estimated by the speed flow model is not acceptable, one shall update the speed flow models. 
The procedures to do so are summarized as follows: 
• Step 1: Use the METANET model, i.e., Eqs. (5)-(7), to estimate the flow rate with pre-

specified values for the parameters (i.e., 𝜙𝜙∗, 𝜅𝜅∗, and 𝜑𝜑∗). 
• Step 2: Check whether the discrepancy between the flow rates, obtained from METANET 

and the speed-flow model, is due to the classification error, or the estimation error caused by 
day-to-day traffic variability. Specifically, the following three conditions need to be assessed: 

o If the flow rate estimated from METANET model is within the estimation range of 
another volume level, it is deemed as a classification error and go to Step 3; 

o If the flow rate estimated from METANET model is within the gap between two 
estimation ranges from two different classified volume levels, it is also deemed as a 
classification error and go to Step 4; 

o Otherwise, it is deemed as an estimation error and go to Step 5. 
• Step 3: Reclassify current traffic conditions to the proper volume level, based on the flow 

rate information produced from METANET, and then apply the revised volume’s associated 
speed-flow model for the next time interval. 

• Step 4: Consider the designated volume level from previous 𝑛𝑛 time intervals as references to 
identify which volume level to be adopted in the next time interval. This can be achieved by 
using Eq. (8): 

𝑌𝑌 = � �𝛼𝛼[1 + (1 − 𝛼𝛼) + (1 − 𝛼𝛼)2 + ⋯+ (1 − 𝛼𝛼)𝑛𝑛−1] × � � 1{𝑞𝑞(𝑘𝑘)∈𝐿𝐿1}

𝑘𝑘−1

𝑘𝑘=𝑘𝑘−𝑛𝑛

− � 1{𝑞𝑞(𝑘𝑘)∈𝐿𝐿2}

𝑘𝑘−1

𝑘𝑘=𝑘𝑘−𝑛𝑛

��
𝑘𝑘−1

𝑘𝑘=𝑘𝑘−𝑛𝑛

 (8) 

where 0 < 𝛼𝛼 < 1 is the weighting parameter; and 𝐿𝐿1 and 𝐿𝐿2 denote two different volume 
levels. Level 𝐿𝐿1 should be adopted for the next time interval when 𝑌𝑌 > 0; otherwise, level 𝐿𝐿2 
should be adopted. 

• Step 5: Update the speed-flow model to include the estimated flow rate from METANET 
while maintaining the size of its original covering area in Figure 5-5. Figure 5-5 illustrates an 
example, where 𝑞𝑞𝑀𝑀 denotes the estimated flow rate from METANET and the original model 
is formulated as: 
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𝐷𝐷 ≤ 𝑞𝑞𝑀𝑀 ≤ 1400 + �𝑣𝑣𝑅𝑅
𝑘𝑘,1(𝑘𝑘)− 10� × 𝐸𝐸 (9) 

the updated model will adjust 𝐷𝐷 and 𝐸𝐸 to form a new covering area that can accommodate 𝑞𝑞𝑀𝑀. 
This can be achieved by using Eqs. (10)-(11). 

𝐷𝐷� = 𝐷𝐷 + �60 − 𝑣𝑣𝑅𝑅
𝑘𝑘,1(𝑘𝑘)�×

𝑞𝑞𝑀𝑀 − 1400
50

 (10) 

𝐸𝐸� =
𝑞𝑞𝑀𝑀 − 1400
𝑣𝑣𝑅𝑅
𝑘𝑘,1(𝑘𝑘)− 10

 (11) 

 
FIGURE 5-5: An Example of the Update of the Speed-Flow Relation 

 
Enhancement of Estimated Flow Rate Reliability using Rolling Horizon Concept 

Recognizing that the flow rate estimated with one set of speed data could be unreliable 
due to either detection error or short-term speed fluctuation, this study adopts the rolling horizon 
logic to ensure the reliability of flow rate estimation when more data become available (i.e., Step 
5 in Figure 5-2). The step-by-step procedures to enhance the reliability of flow rate estimation 
are summarized below: 
• Step 5-1: Estimate the set of flow rates from time interval 𝑘𝑘 − 𝑀𝑀 to time interval 𝑘𝑘, where 

𝑀𝑀 = 2,3, … ,ℎ, based on the developed speed flow models 𝑓𝑓(𝑣𝑣), as shown in Eq. (13):  
𝑞𝑞𝑅𝑅
𝑘𝑘+1,𝑅𝑅(𝑘𝑘) = 𝑓𝑓(𝑣𝑣�𝑅𝑅

𝑘𝑘+1,𝑅𝑅(𝑘𝑘)) (13) 

where 𝑣𝑣�𝑅𝑅
𝑘𝑘+1,𝑅𝑅(𝑘𝑘) denotes the weighted average speed from time interval 𝑘𝑘 − 𝑀𝑀 to time 

interval 𝑘𝑘, using the speed and flow rate information estimated from previous time 
intervals, as shown in Eq. (14):  

𝑣𝑣�𝑅𝑅
𝑘𝑘+1,𝑅𝑅 =

∑ 𝑣𝑣𝑅𝑅
𝑘𝑘−𝑛𝑛+1,1(𝑘𝑘 − 𝑛𝑛) × 𝑞𝑞𝑅𝑅

𝑘𝑘−𝑛𝑛+1,1(𝑘𝑘 − 𝑛𝑛)𝑅𝑅−1
𝑛𝑛=0

∑ 𝑞𝑞𝑅𝑅
𝑘𝑘−𝑛𝑛+1,1(𝑘𝑘 − 𝑛𝑛)𝑅𝑅−1

𝑛𝑛=0
 (14) 

• Step 5-2: Estimate the single-interval flow rate from time interval 𝑘𝑘 − 𝑛𝑛 − 1 to time interval 
𝑘𝑘 − 𝑛𝑛, where 𝑛𝑛 = 1,2, … ,ℎ − 1, using Eq. (15): 
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𝑞𝑞𝑅𝑅
𝑘𝑘+1, 1(𝑘𝑘 − 𝑛𝑛) = 𝑞𝑞𝑅𝑅

𝑘𝑘+1, 𝑛𝑛+1(𝑘𝑘) × (𝑛𝑛 + 1) − 𝑞𝑞𝑅𝑅
𝑘𝑘+1, 𝑛𝑛(𝑘𝑘) × 𝑛𝑛 (15) 

• Step 5-3: Enhance the reliability of the single-interval flow rate from time interval 𝑘𝑘 − 𝑛𝑛 − 1 
to time interval 𝑘𝑘 − 𝑛𝑛, where 𝑛𝑛 = 1,2, … ,ℎ − 1, by integrating all estimated flow rates for 
that interval, as shown in Eq. (16): 

𝑞𝑞�𝑅𝑅
𝑘𝑘+1, 1(𝑘𝑘 − 𝑛𝑛) =

∑ 𝑞𝑞𝑅𝑅
𝑘𝑘+1−𝑚𝑚,1(𝑘𝑘 − 𝑛𝑛)𝑛𝑛

𝑚𝑚=0
𝑛𝑛 + 1

 (16) 

• Step 5-4: Compute reliable flow rate from time interval 𝑘𝑘 − 2ℎ to time interval 𝑘𝑘 − ℎ, using 
the flow rate estimated for every individual time interval from time interval 𝑘𝑘 − 2ℎ to time 
interval 𝑘𝑘 − ℎ, as formulated in Eq. (17) 

𝑞𝑞�𝑅𝑅
𝑘𝑘+1, ℎ(𝑘𝑘 − ℎ + 1) =

∑ 𝑞𝑞𝑅𝑅
𝑘𝑘−ℎ+𝑛𝑛+1,1(𝑘𝑘 − 2ℎ + 𝑛𝑛 + 1)ℎ

𝑛𝑛=1
ℎ

 (17) 

Figure 5-6 illustrates an example of applying such procedures for enhancing the 
reliability of the flow rate estimation, where ℎ = 5 (i.e., that is, the estimates are produced per 5 
minutes from the probe speed data collected per minute). While the flow rate estimation for time 
interval 𝑘𝑘 − 5 to time interval 𝑘𝑘, dependent on the estimated results from time 𝑘𝑘 − 1 to time 𝑘𝑘 
(as shown between the red dashed lines), can be made preliminarily at as early as time 𝑘𝑘 + 1, the 
most reliable estimation will be provided at time 𝑘𝑘 + 5 when more data is available. 

   
FIGURE 5-6: Schematic Figure of the Initial Estimation and the Reliable Estimation of the Flow Rates 

 
5.3 NUMERICAL EXPERIMENTS 

The numerical experiments reported in this study focus on two major tasks: 1) calibration 
of the enhanced METANET and identification of the feasible range for the model parameters; 
and 2) performance evaluation for the proposed R-DRES. The first task aims to calibrate a set of 
optimal parameters for the enhanced METANET by using the off-line data collected by available 
detectors, and then use the set of calibrated parameters to pre-define the feasible range for each 
parameter used in the flow rate assessment method. In the second task, the developed R-DRES 
will be applied to two incidents to estimate the detouring rate. The effectiveness of the flow rate 
assessment process will be based on whether the flow rate estimated from the speed-flow model, 
but not sufficiently reliable, can indeed be captured by the proposed methodology that employs 
the METANET model in a reversed computing process. This is followed by a performance 
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evaluation of the entire proposed system with the two following measures of effectiveness 
(MOEs): 
• MOE 1: The differences between the observed total detouring rate and that estimated from 

the proposed model during the entire incident duration; and 
• MOE 2: The consistency between the travel time increment on the detouring route and the 

detouring volume from the mainline. 
 
Calibration of the Enhanced METANET and Identification of the Feasible Parameter Range 

Prior to the application of the proposed system, one needs to first specify the parameters 
embedded in the enhanced METANET and their feasible ranges. The pre-specified parameters 
were calibrated using traffic data along a 6-mile segment of I-270 Maryland from Exit 16 to Exit 
22 to capture the behavioral patterns of the local driving populations. The studied segment was 
deployed with three roadside sensors to collect speed and flow rate data, each covering a 2-mile 
sub-segment on the freeway modeled with METANET. The calibration was conducted using 5-
minute average speed and flow rate data between 9/11/2022 to 9/17/2022 (an incident occurred 
on 9/15/2022), with a total of 10,080 records. Table 5-2 presents the calibrated value for each 
parameter specified in the enhanced METANET. 

 
The feasible range was then identified based on the calibrated parameters, and the 

tolerance level for the MAPE increase where the change in parameters is set to be 10% (i.e., 𝛿𝛿 =
10%). Table 5-3 summarizes the resulting feasible ranges for three major parameters (i.e., 𝜙𝜙, 𝜅𝜅, 
and 𝜑𝜑) under those seven distinct scenarios. With the calibrated parameter values and the 
feasible ranges for the three major parameters, the performance evaluation then proceeds with 
data from two real-world incidents. 

 
TABLE 5-2: Pre-Specified Values for METANET Parameter 

Pre-specified Parameters 

𝜙𝜙 48 

𝜅𝜅 46 (veh/mile) 

𝜑𝜑 1.79 

𝜋𝜋 15 (mph) 

𝜏𝜏 690 (veh/hr) 
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TABLE 5-3: Feasible Range for each METANET Parameter under Different Searching Scenarios 

Scenario Changeable parameter(s) Feasible Range 

1 𝜙𝜙 15 ≤ 𝜙𝜙 ≤ 96 

2 𝜅𝜅 17 ≤ 𝜅𝜅 ≤ 401 

3 𝜑𝜑 1.35 ≤ 𝜑𝜑 ≤ 2.26 

4 𝜙𝜙, 𝜅𝜅 32 ≤ 𝜙𝜙 ≤ 71, 32 ≤ 𝜅𝜅 ≤ 220 

5 𝜙𝜙, 𝜑𝜑 31 ≤ 𝜙𝜙 ≤ 73, 1.59 ≤ 𝜑𝜑 ≤ 2.00 

6 𝜅𝜅, 𝜑𝜑 32 ≤ 𝜅𝜅 ≤ 223, 1.58 ≤ 𝜑𝜑 ≤ 2.01 

7 𝜙𝜙, 𝜅𝜅, 𝜑𝜑 37 ≤ 𝜙𝜙 ≤ 64, 37 ≤ 𝜅𝜅 ≤ 158, 1.65 ≤ 𝜑𝜑 ≤ 1.94 

 
Incidents Information 

To evaluate the effectiveness of the proposed model, this study has adopted two incident 
cases occurring on the southbound of I-95 in Maryland. The observed detour rate was extracted 
from the Trip Analytics tool of the Regional Integrated Transportation Information System 
(RITIS) database (CATT, 2023), which provides the routing patterns and origin-destination data 
from extensive sets of time-stamped "bread-crumb trails" that are created by probe vehicles in 
the traffic flows. By using this tool, one can collect the routing pattern of those probe vehicles 
during the incident duration and compare them with that without the incident during the same 
day of the week and time of day. Such a difference for the entire incident duration would be 
regarded as the observed detouring rate.  

 
Figure 5-7 illustrates the information of incident Case 1, which occurred on the southbound 

of I-95 on 12/21/2022, causing 5 miles of the incident queue and 90 minutes of the incident 
duration. Hence, the three upstream interchanges (i.e., I-95 @ MD 32, I-95 @ MD 175, and I-95 
@ MD 100) were taken into consideration to estimate the potential detouring rate. The potential 
detouring routes for vehicles traveling southbound of I-95 include US-1 on the East side of I-95 
and US 29 on the West side. Based on such information, the Trip Analytics tool was then used to 
collect associated information (see Figure 5-7). The routing patterns of vehicles on two different 
days (i.e., with and without the incident) traversing through the defined zone and with their travel 
starting points and ending points outside the defined zone are collected. It can be observed that 
100% of vehicles would take I-95 without the incident, while 79.6% of the traffic remains on I-95 
with the incident, indicating a 20.4% detouring rate. 

 
Figure 5-8 illustrates the incident information of Case 2. The incident location was on the 

southbound lanes of I-95, the incident duration was 150 minutes and incurred 3.3 miles of the 
queue. Hence, considering its impact area, the two upstream interchanges (i.e., I-95 @ MD 175, 
and I-95 @ MD 100) were used to estimate the potential detouring rate. Similar to Case 1, the 
potential detouring route for vehicles traveling southbound of I-95 includes US-1 on the East 
side of I-95 and US 29 on the West side. The routing patterns of vehicles on two different days 
(i.e., with and without the incident) are collected from the Trip Analytics Tool, as shown in 
Figure 5-8. Likewise, 100% of vehicles would stay on I-95 without the incident, while 74.0% of 
the traffic stays on I-95 during the incident, indicating a 26.0% detouring rate. 
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FIGURE 5-7: Incident Information and Routing Patterns for Incident Case 1 
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FIGURE 5-8: Incident Information and Routing Patterns for Incident Case 2 
 
Verification of the Flow Rate Assessment Function 

As for the effectiveness of the proposed R-DRES, the number of unacceptable flow rate 
estimates detected by the assessment function are summarized in Table 5-4. Note that the speed-
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flow relation can indeed capture the traffic conditions of freeway segments under incident-free 
conditions yielding acceptable flow estimates for all roadway segments in Case 1 and Case 2. In 
addition, it is also shown that the speed-flow relation performs well in Case 1, resulting in only 
0.7% of unacceptable estimates of the flow rate. For Case 2, the unacceptable rate was up to 
2.3%, indicating that there were more complex traffic dynamics which cannot be precisely 
captured with the off-line calibrated speed-flow relations. As such, the update algorithm based 
on the METANET was triggered more frequently to enhance the reliability of the speed-flow 
relations. 
 

TABLE 5-4: Number of Unacceptable Estimates of Flow Rate from the Speed-Flow Models 

 Case-1 (270 samples)a Case-2 (300 samples)a 

 Interchange-
1 

Interchange-
2 

Interchange-
3 

Avg. 
acceptable 

rate 

Interchange-
1 

Interchange-
2 

Avg. 
acceptable 

rate 
w/o 

incidentb 0 0 0 0% 0 0 0% 

w/ 
incidentc 0 2 0 0.7% 3 4 2.3% 

Note: 
a Total number of sample estimates executed by the models. 
b The number of unacceptable rate estimations from the speed-flow model during an incident-free period 
c The number of unacceptable flow rate estimations from the speed-flow model during the incident clearance period. 
 

Figure 5-9 shows the comparison results of the flow rate over time for Interchange 1 (i.e., 
MD 195 @ I-95). It can be observed that three estimated flow rates (i.e., 96th-98th minute) from 
speed-flow models are deemed unacceptable based on the assessment results with the 
METANET model (see orange dots in Figure 5-9). The estimation errors from the speed-flow 
model are likely due to the sudden speed drop near Interchange 2 caused by the propagation of 
the incident queue starting from the 93rd minute (as shown in the lower figure of Figure 5-9). 
However, by updating the speed-flow model with data from those three time periods (96th-98th 
minute), it is noticeable that the model regains its ability to capture traffic conditions over the 
remaining time periods.   
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FIGURE 5-9: Illustration of the Flow Rate Assessment Function from METANET Model 
 
Performance Evaluation of the Proposed R-DRES 

To evaluate the reliability and accuracy of the detour rate estimation by R-DRES, Table 
5-5 summarizes the MOE 1 for Case 1 and Case 2. The estimation results with and without the 
use of the assessment function are shown to compare their differences. It shows that with the 
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assessment function with METANET model, the proposed system can provide reliable 
estimations of the detouring rate, with only a 2.7% and 0.2% difference from the ground-truth 
detouring rate. In contrast, without using the assessment and performing the model update, the 
estimation system clearly yields inferior results. 
 

TABLE 5-5: Evaluation results of the detouring rate estimation with MOE-1 

 Case 1 Case 2 
Total Inflow (veh) 2,377 4,319 
Ground-truth Detouring Rate (%) 20.4% 26.0% 
   
With the assessment function or not  Yes No Yes No 
Total Detouring Volume (veh) 549 557 1134 917 
Detouring Rate (%) 23.1% 23.4% 26.2% 21.2% 
MOE-1 (Total Detouring Volume/Total 
Inflow) 2.7% 3.0% 0.2% 4.8% 

 
To further evaluate the effectiveness of the entire R-DRES system, this study tested 

whether the detouring flow rate and the increase in the detour route’s travel time share the same 
trend. For Case 1, the travel time on the segment between Exit 15 and Exit 16 of US 29 was 
collected because it accommodated the most detouring vehicles and locates just upstream of the 
interchange of US 29 @ MD 216 where the detouring vehicles are likely to get back to I-95 to 
avoid congestion due to the incident. Likewise, the segment between Exit 16 and Exit 18 of US 
29 was collected for Case 2. The McDonald-Kreitman test (McDonald and Kreitman, 1991) was 
conducted to test if the increment of the travel time on the detouring route and the detouring 
volume from the mainline share the same trend. The evaluation results in Figure 5-10 show that 
the trends of the detouring flow from the mainlines are consistent with the evolution of travel 
time increment on the associated detouring roadway segments, confirming the effectiveness of 
the proposed R-DRES system in estimating detouring rate. 
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FIGURE 5-10: Evaluation Results of the Detouring Rate Estimation with MOE-2 

 
In brief, experimental analyses with data from two real-world incidents have shown that 

the proposed system offers the potential for use in estimating the detouring rate to neighboring 
arterials, resulting from time-varying queues due to a freeway incident. Such a system, designed 
mainly for approximating detouring traffic impacts on neighboring streets without information 
from traffic surveillance systems, may not yield precise detour flow rate information over time, 
but its resulting estimates are within the acceptable range and sufficiently robust for traffic 
control centers to assess the need to active necessary control strategies, especially during the 
clearance period of severe incidents.  
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Chapter 6 
Conclusions and Recommendations 

 
6.1 CONCLUDING FINDINGS 

This phase of the study has finalized the innovative system for real-time prediction of a 
detected incident’s duration and its potential traffic impacts on both the subject freeway and its 
neighboring local streets due to the queues and resulting detouring off-ramp flows. With such 
information, highway agencies responsible for incident response and traffic management can 
inform en-route motorists via any advanced traveler information system or public media of the 
location and time duration over which the freeway segment will be plagued by nonrecurrent 
congestion queues. Depending on the severity level of the detected incidents and the estimated 
traffic impacts, responsible traffic agencies can either concurrently or sequentially respond with 
appropriate strategies. Some major findings from this study are summarized below: 
1. The innovative method of transferability analysis developed in this study has proved its 

effectiveness in coping with the data insufficient issue, allowing the responsible agency to 
take advantage of some quality data and well-calibrated models from some regions/districts 
to generate the estimated clearance time for a detected incident in other areas (e.g., 
underserved highway networks). More specifically with the developed methodology the 
extensive set of knowledge-based rules for incident duration prediction, developed for I-495, 
I-695, I-70, and US 29, can be applied to all major highways which suffer from insufficient 
incident data for calibrating their own customized prediction models. 

2. Although a traffic surveillance system with well-calibrated and properly spaced sensors is 
most desirable for designing and operating a real-time effective incident response and traffic 
management system, the speed data from probing vehicles integrated with a set of off-line 
reliably calibrated models can produce an acceptable approximate of a detected incident’s 
traffic impact range during incident clearance period. Such information is sufficiently reliable 
for use in advanced traveler information systems and the selection of responsive traffic 
management strategies. 

3. Innovative integration of speed data from real-time probing vehicles and a well-calibrated 
macroscopic traffic model seems to offer any viable alternative for estimating the detour rate 
from mainline traffic within the impact boundaries of the incident-incurred queues, and for 
assessing the resulting impacts to neighboring local networks. 

4. This study–with an innovative modeling methodology in artificial intelligence and creative 
use of available archived traffic data–clearly shows that one can derive essential estimates 
critical to efficient incident response and traffic management, including the estimated 
incident clearance duration, the maximum distance of the resulting queue impacts on the 
main traffic and neighboring local networks. 

5. The system, developed in this study for incident response and traffic management, offers an 
effective alternative for highway agencies to circumvent the need of extensive detector 
deployment and the demanding maintenance efforts, as well as the associated costs, so long 
as all essential traffic and incident-related data are properly archived in a reliable database 
system.   
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In brief, it is expected that the best use of the developed system with only archived data 
and real-time probe vehicle information can produce significant benefits to the entire community 
served by the highway networks, including the reduction in incident-incurred congestion delay, 
fuel consumption, emissions, potential secondary incidents, balance of traffic conditions between 
the freeway mainline and its detour routes, and associated costs for maintaining an efficient 
incident detection, response, and management operation. 
 
6.2 RECOMMENDATIONS FOR FUTURE STUDIES 

Although this study has successfully developed an integrated incident management 
system that with its innovative modeling structure can effectively circumvent the demanding 
development efforts and extensive data needs for key module calibration, much, however, 
remains to be done to ensure the sustainable operations of such a system and its reliability as 
well as accuracy with emerging new technologies. Some of the essential future extensions and 
enhancements are listed below: 
1. A mechanism with state-of-the-art methodology in artificial intelligence for the developed 

system to automatically update its key parameters, based on the newly available data from 
daily incident response and operations. 

2. Periodical recalibration and update of those off-line calibrated speed-flow relation models 
under various incident scenarios will be essential so that the evolution of traffic patterns and 
possible change in driver responses to incident scenarios, reflected, to some extent, in the 
archived datasets can be properly captured with updated model parameters. 
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