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Executive Summary 
This project aims to develop, assess, and optimize control strategies for ramp metering 

and local signal synchronization in Maryland's Transportation Systems Management and 
Operations (TSMO) 1 system (I-70 corridor east of Baltimore, MD). This is done through 
developing a mesoscopic, high-granular, simulation-based dynamic network model for Baltimore 
regional networks, which enables measure system-level and local-level performance. Those 
control strategies can be applied to typical weekdays to mitigate highway congestion without 
compromising traffic conditions on surface streets. In addition, coupled with ahead-of-the-curve 
traffic prediction, those control strategies can be engaged proactively in response to non-
recurrent traffic conditions.   

A computationally efficient mesoscopic network simulation tool is constructed 
incorporating a signal control module for coordinated signalized intersections and ramp 
metering. One run of over 250,000 vehicles across 15,376 origin-destination O-D pairs, 1,509 
links, and 775 nodes take less than three minutes on a regular Intel i-5 desktop computer. In 
addition, this network model can be generally applicable to evaluate and optimize other traffic 
management strategies, such as lane control, pricing, information provision, queue warning, etc. 
This would help the Maryland Department of Transportation State Highway Administration 
(MDOT SHA) with other Intelligent Transportation System (ITS) related projects for TSMO 1 
system.  

The dynamic network model is calibrated by a state-of-art data-driven calibration 
framework using multi-source, multi-class data collected from different traffic sensing systems. 
The result demonstrates the calibrated model has a satisfactory accuracy to reproduce actual 
traffic conditions.  

Two control strategies, ALINEA and local signal synchronization (LSC), are 
implemented and tested to control metering rates at two most prominent ramp locations along the 
I-70 corridor. The goals are minimizing system-level congestion and ensuring equity among
highways and arterials. Various scenarios with different demand levels, control strategies and
incident occurrence are generated to examine the effectiveness and robustness of the proposed
control methods.

The main finding of this project is that the LSC method consistently outperforms 
ALINEA in terms of achieving a greater reduction in average travel time, vehicle miles traveled 
(VMT), and vehicle hours traveled (VHT). LSC also ensures a good balance of vehicle delay on 
both ramps and immediate downstream highway segments.  

It is recommended to SHA to consider performing coordination among ramp metering 
and localized signal control to achieve the best performance and ensure equity. The LSC method 
has a stable performance under recurrent congestion and non-recurrent traffic impacts. It can be 
proactively engaged with ahead-of-the-curve traffic prediction under non-recurrent incidents that 
impact the immediate downstream highway segments of ramps.  
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1. Introduction
Operating a joint network of highways and arterial streets in real-time is challenging. The 

main challenges are twofold. Highways and arterials are highly inter-dependent but may have 
their own operational strategies and systems that do not necessarily synchronize. As a result, 
traffic queues can spillover from highways to arterials, or the other way around, leading to 
substantial congestion that worsens the overall system performance. Coordinating the signal 
control system on arterials and ramp metering control on ramps to/from highways are one key to 
mitigating such congestion. In addition, most signal or ramp metering systems deal with 
recurrent traffic congestion or normal traffic conditions. They can alleviate queues locally to 
some extent under non-recurrent congestion (being responsive or reactive) but are not designed 
to prevent queuing from the occurrence of incidents (being predictive) nor mitigate congestion 
for the joint network. To this end, managing traffic predictively (or proactively) and coordinating 
ramp metering and street signals among all relevant highway on-ramps/off-ramps can effectively 
improve the joint network performance. 

Transportation Systems Management and Operations refers to a set of strategies that 
could be utilized to mitigate system-level congestion, particularly non-recurrent traffic impacts, 
such as information provision, signalization, and access control. Though TSMO are technically 
available to practitioners, but what time and what strategy to engage remains unknown. Being 
predictive and proactive, and coordinating among all control strategies (e.g., street signals and 
ramp metering jointly), is the key to effective management of network-level traffic. Proactive 
operational management is highly dependent on accurate real-time traffic data and swift real-
time traffic prediction. 

This research project aims to integrate solutions to the two problems into a fully scalable 
TSMO system: ahead-of-curve prediction and system-level signal and ramp metering 
coordination. The former was previously addressed by [1], where we propose theories, models, 
and algorithms of machine learning to predict traffic patterns in real time and identify non-
recurrent patterns. Provided with advanced prediction, signal timing plans can be adjusted ahead 
of severe congestion (recurrent or non-recurrent) to favor foreseeable flow streams that become 
dominant on certain streets or routes. To this end, we develop models and test solutions to 
optimize the timing plans for both ramp metering and street signals in the TSMO system. 
Prediction and operational strategies are intimately coupled. The prediction will be made by a 
machine that learns not only historical traffic patterns, but also real-time data (possibly from 
multiple sources). Operational strategies are made and updated in real-time to achieve 
management goals (e.g., minimization of total travel time) as a result of ahead-of-curve 
prediction of network impacts. In particular, acknowledging the effectiveness of the ahead-of-
curve prediction, the research focuses on the system-level signal and ramp metering coordination 
for system-level performance improvement: fuse multiple data sources related to highways and 
local street/intersections; develop an efficient network-level modeling framework enabled and 
validated by multi-source data; make real-time optimal signal plans and ramp metering plans; 
and finally quantify the network benefits of operational strategies to improve mobility/safety. 
The project demonstrates the effectiveness and replicability of the models and algorithms in 
Maryland’s TSMO 1 system. 
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2. Literature Review
This section presents a review of prior work on transportation network flow models and 

how ramp metering and signal timing control are incorporated into the network loading models. 
State-of-the-art control schemes for ramp metering and signal timing are also summarized. 

2.1 Network Traffic Flow Model 
In traffic flow models, transportation networks are represented by directed graphs. The 

links of a graph represent major roadway segments. The nodes of a graph are placed at locations 
where a major change in road geometry occurs (e.g., on-ramps and off-ramps, merge/diverge, 
intersections, etc.), or to enforce boundary conditions such as origin-destination (OD) demand 
and control schemes such as signal timing and ramp metering [2]. 

2.1.1 Transportation Network Modeling 
In mesoscopic traffic simulation, traffic flow is first quantized into vehicle packets [3]. A 

small loading interval (e.g., 5 seconds) is set and vehicles are released from origin nodes. At the 
beginning of each interval, the vehicles are loaded through the network according to the 
evolution rules defined by link and node models, and vehicles are kept moving until all vehicles 
reach their destinations. The core components of network flow models, or dynamic traffic 
assignment (DTA), are thus link models, node models, and travelers’ route choice models. To 
approximate various real-world roadway and driving scenarios, abundant research has been 
conducted for the three core models below. 

Link Model: Given supply and demand of each link at time step 𝑡𝑡, link models determine 
receiving and sending flow and move vehicles through each link in the traffic network. 

Point queue (PQ) models [4, 5] place the queue at the downstream end of the link which 
occupies no physical space but conceptually holds vehicles back to represent any congestion 
delay on the link [2]. PQ discharges vehicles at a maximum rate and the receiving flow is a 
constant which represents the maximum in-flow rate. PQ is often used to model virtual 
(un)loading links connected to origin and destination nodes. 

Spatial queue (SQ) models [6] add a gate on receiving flow to reflect the finite space on 
the link. Queue spillover occurs at critical density, i.e., at that time no vehicles can enter the link. 
The sending flow for SQ is calculated in the same way as for PQ model. SQ simulates the 
scenario where all vehicles in a queue move together. SQ can be used to model short links as 
spatiotemporal evolution of queue spillback along the link is ignored by the model. 

Cell transmission model (CTM) [7] is an explicit solution to Lighthill-Whitham-Richards 
(LWR) hydrodynamic traffic flow model using Godunov’s scheme [8, 9]. Time is discretized 
into intervals of length ∆𝑡𝑡 and links are divided into cells of length ∆𝑥𝑥 ≤ �𝑣𝑣𝑓𝑓∆𝑡𝑡�− (where 𝑣𝑣𝑓𝑓 is
the free-flow speed of a link) which ensures a vehicle can travel through a cell in one time step 
under free-flow traffic conditions. The queues are placed at each cell along the link so the 
spatiotemporal evolution of queue spillback can be modeled. 
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Link queue (LQ) [10] models each link in the graph as a cell while still continuously 
approximating the kinematic wave model on a road network. CTM and LQ are often used for 
modeling flow evolution for major roadways in the network. 

 
Link transmission model (LTM) [11, 12] uses the Newell-Daganzo method to directly 

calculate sending and receiving flows of each link. Instead of tracking the states of cells within 
links in CTM, LTM stores the link cumulative curves and calculates the outflow at the ends of 
the links using the forward and backward prevailing traffic states determined by link 
fundamental diagram. A stochastic network loading model called double queue (DQ [13, 14]) is 
also developed as a probabilistic extension of LTM. 

 
Node Model: A node model is a predefined function that computes the resulting flow on each 
connecting pair while satisfying several constraints and principles [2] which respect route 
choices, first-in-first-out (FIFO), and invariance principles, etc. 
 

FWJ node model [15, 16, 17] is one example of junction flux function which computes 
the flux of any upstream link to any downstream link using the minimum of weighted average 
sending and receiving flow weighted by turning portions. A general node model which handles 
multiple upstream and downstream links was proposed by [18] the virtual demand which 
represents the maximum possible outflow rate and virtual supply which represents the maximum 
possible receiving flow is used instead of actual demand and supply. These two general node 
models contain link-in-series, diverge, and merge nodes as a special case, and can model general 
uncontrolled-competition intersections [19]. 

 
Complex link and node models can also represent signal-controlled intersections, 

stop/yield-controlled intersections [20], roundabouts, ramp metering, and so forth. The 
integration of signal-controlled intersections and ramp metering are summarized in Section 2.1.2 
and 2.1.3. 

 
Route Choice Model: Route choice models convert origin-destination (OD) demand into time-
dependent path flows. Popular route choice models include dynamic user equilibrium [21, 22], 
dynamic system optimal [23, 24], adaptive routing, hybrid models [25], and discrete and logic 
choice models [26, 19, 27, 28]. For non-recurrent traffic conditions, behavior models that 
characterize traveler’s behavior changes after incidents [29, 30] and prediction-correction models 
[31] are often built to simulate the time-dependent diverted traffic flow under pre-defined 
incident scenarios. The research gap lies in modeling route choices under unplanned incidents 
and providing a reasonable goodness of fit to field traffic data. 
 
2.1.2 Ramp Metering Integration in Network Modeling 

The most common approach to model ramps with signal control is by supply-demand 
approach [32]. For a freeway on-ramp with a meter, the ramp metering rate (0 ≤  𝑟𝑟(𝑘𝑘)  ≤  1) is 
the ratio of metered flow rate over the on-ramp full flow capacity C, which clips the demand of 
upstream links [33, 34, 35, 36, 37, 38]. An alternative approach applies metering rate directly on 
the outflow that would leave a cell in absence of ramp metering [39]. The metering rate 𝑟𝑟(𝑘𝑘) is 
given by a ramp controller (e.g., fixed time [40], local [41], coordinated [42]) and updated 
depending on traffic conditions [43]. In [44], the state-space model for each segment is 
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formulated as a subsystem with a discrete-time stochastic state-space model linear to the vector 
of ramp metering rates produced by the respective controller. 

 
2.1.3 Signal-Controlled Intersection in Network Modeling 

For a signal-controlled intersection, each turning movement is represented as a separate 
link model and an intersection node model permits a combination of movements that receive the 
right-of-way with a gate on the upstream link demands [32, 45, 46]. A pre-timed signal timing 
document (or given by a controller in real-time), defines the group of permissible vehicle 
movements, cycle length, green split, and offset, and is then used by the intersection node as 
model input. A network traffic assignment with integrating signal control and path-based signal 
was presented in [47, 48]. A set of experiments was designed to compare the network 
performance under the path-based coordination scheme with no coordination and arterial-based 
coordination. In [45, 46], the signal control splits given by a controller is applied to the 
intersection cells to reduce maximum flow capacity. A linear DTA with signal control was then 
developed which obtains system-optimal flows as well as the lowest possible emission. A joint 
dynamic traffic routing and adaptive signal control model is proposed in [49]. The control 
strategy is tested and analyzed by microscopic traffic simulation with signalized intersections 
under different levels of demand. [50] optimized the timing of signalized intersections for each 
rate to eliminate the impacts of sub-optimal signal timing parameters on network performance. It 
should be noted that due to the characteristics of gated signals at intersections, the network 
dynamics is often rendered into a nonlinear model with discrete states and inputs [51]. 
Continuous relaxations [52, 53, 54, 55, 56], surrogate methods [57, 58], and decomposed models 
[59] were proposed to convert the system dynamics to continuous regime or to a stack of smaller 
optimization problems. 

 
2.2 Integrating Ramp Metering and Intersection Signal Control 

Ramp metering [60] and intersection signal control strategies can be categorized into pre-
timed or traffic-responsive methods [35]. Pre-timed signal timing plans [40] are optimized for 
particular times of the day, or a typical day of week and holidays based on constant historical 
traffic. Traffic-responsive control strategies can be further classified as local and coordinated 
[60]. Local strategies make use of traffic measurements in the vicinity of a ramp or intersection 
to optimize ramp metering values or splits, offsets, and cycle of signal timing plan. Coordinated 
strategies make use of measurements from an entire region of the network to control and 
synchronize all metered ramps and signalized intersections. Local strategies include rule-based 
controllers such as proportional-integral-derivative (PID) controller [41], neural network or 
fuzzy-logic based approaches [61], and reinforcement learning [62, 63]. Coordinated strategies 
involve interactions among signals and metered ramps through network flow models. Optimal 
control strategies or model-predictive control (MPC) are often used. Most Traffic Management 
Centers in the U.S. operate a coordinated signal system that relies on historically generated 
signal timing plans, coupled with real-time technology to manage day-to-day operations on the 
local network [1]. 

 
2.2.1 Ramp Metering Control 

Fixed-time ramp metering strategies are optimized off-line for particular times-of-day 
with constant historical traffic. Linear programming or quadratic programming problems [40, 64, 
65] were formulated to solve for static on-ramp volumes which maximize the number of served 
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vehicles while avoiding traffic congestion on the mainline. Due to the absence of real-time 
measurements, pre-timed ramp metering strategies cannot adapt to real-time traffic states (e.g., 
non-recurrent demand, incidents, etc.) and may lead to congestion or underutilization of the 
freeway [35]. 

 
The most commonly used traffic-responsive approach for local ramp metering control is 

the feedback ALINEA controller [41, 66]. ALINEA is a feedback controller to track the 
difference between desired down- stream occupancy (typically the critical occupancy) and 
current occupancy with ramp metering rate. Neural network [67] or fuzzy-logic based [61] 
methods are also applied. For coordinated ramp metering control strategies, optimal control or 
MPC [68, 35, 69, 70] which embed a network flow model with ramp metering into the 
optimization are proposed. 

 
Recently, reinforcement learning (RL) methods are used for local and coordinated ramp 

metering control [71, 72, 73, 74]. A simulation environment with ramp metering control is built 
with system states, control inputs, and rewards are defined beforehand. A neural network is 
updated to approximate the optimal control policy [63, 75, 76] which maps the system states to 
the control inputs to maximize the cumulative future rewards. However, the effectiveness of RL 
methods for real-world applications is often questioned, since there is a lack of a risk-free traffic 
environment for RL to exercise trial-and-error considering RL’s low sample efficiency [77, 78]. 
In addition, RL algorithms make assumptions on system dynamics that may not necessarily align 
with ground truth, they may take quite long time to converge in practice. This prevents the 
deployment of RL in ramp metering practice. 

 
2.2.2 Signalized Intersection Control 

Classic traffic signal control methods include Webster method [79], GreenWave [80], 
MaxBand [81], SOTL [82], Max pressure [83], SCOOT [84], etc. A detailed review of these 
methods can be found in [85]. These methods should be taken into comparison as baselines for 
MPC or RL methods. For coordinated signal timing control, several dynamic traffic assignment 
models with signal control [86, 87, 88, 89] have been proposed in the literature. Most of them are 
formulated as a mixed-integer programming (MIP) program due to the discrete nature of system 
states and control inputs. Continuous relaxation to the optimization problems are later presented 
[52, 53, 54, 55, 56]. As an alternative, multi-agent reinforcement learning (MARL) approaches 
[90, 91] are recently applied to scale coordinated signalized intersection control to large-scale 
network [92]. 

 
A fully decentralized multi-agent actor-critic algorithm for adaptive traffic signal control 

is presented in [93]. [94] tackles the problem of multi-intersection traffic signal control, 
especially for large-scale networks, based on RL techniques and transportation theories. The 
results demonstrate optimality and sample efficiency in a real-world scenario with 2,510 traffic 
lights in Manhattan, New York City. 

 
2.2.3 Integrated Corridor Control: Local Synchronization 

Traffic corridor control optimizes traffic performances in both motorways and urban 
roads, typically integrating ramp metering control at the motorway entrances with signal control 
at road intersections [95]. Jointly optimizing both sub-systems in MPC is essentially hard. [36] 
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proposed a solution by integrating actuated signal control and ALINEA through local 
synchronization. The framework controls ramp metering rate by ALINEA, but the meter is 
switched off when the intersection was congested and queue-overwrite was needed. Actuated 
control is used for signalized intersection with the maximum green of each phase adjusted 
according to the real-time traffic states. Similarly, in [96], ramp metering is controlled by UP 
ALINEA with queue-overwrite and an interchange signal optimization node which takes into 
account the meter rate and on-ramp queue length are solved to obtain green duration for each 
movement. A local synchronization traffic control scheme is proposed to manage queues at those 
critical locations through coordination of neighboring intersection traffic signals and freeway on-
ramp meters. 

 
A decomposed corridor control framework is developed in [97] which features a linear 

programming algorithm for coordination of a freeway entrance ramp metering and an arterial 
intersection signal. This framework is comprised of three components: (1) intersection signal 
timing optimization which minimizes the gap between demand and supply of all movements, (2) 
a ramp metering control using ALINEA, and (3) coordination strategy of the two traffic control 
systems which adjust parameters in the objective function of intersection signal timing 
optimization. The framework is tested at Freeway SR87 near Taylor and analysis demonstrates 
the effectiveness of the approach with a net delay reduction by 7%. 

 
3. Research Gaps and Tasks 
Based on the literature review, the main research gaps lie in: 
 

• The dynamic network models integrating both ramp metering and local signalization 
exist but are in lack of theories and models to be calibrated with large-scale multi-source 
data. Those data sets become increasingly available, for example, 24/7 traffic counts, 
traffic speeds, weather conditions, vehicle classifications, incidents, and Waze, which 
could help better understand the dynamic O-D flow and travel behavior under unplanned 
incidents. 

• The dynamic network models usually consider only standard passenger cars without 
explicitly modeling trucks, though the impact of trucks can be tremendous, particularly 
under non-recurrent incidents. Traffic data by vehicle classification can be used to better 
understand the travel behavior and traffic flow by cars and trucks, separately. Therefore, 
information dissemination and signal control may target a specific vehicle class to 
improve system efficiency. 

• Most of models for synchronizing ramp metering and local signalization are designed for 
a few adjacent intersections surrounding a ramp. The network impact of signal 
synchronization at the level of multiple ramps across multiple highways are not explicitly 
modeled. This is particularly important for managing a regional network, e.g., a TSMO 
system for a corridor or a network. 

• Most of control strategies for synchronizing ramp metering and local signalization are 
responsive or reactive. Control strategies reactive to detected incidents or real-time traffic 
flow, which could be too late to gain system improvement once the congestion is already 
occurring. The best way is to design control strategies in a predictive manner. Traffic can 
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be predicted for each roadway segment 30 minutes in advance. Thus, engaging optimal 
control is designed to prevent substantial queuing proactively. 
 

In view of these research gaps, a recommended proposal is to develop and assess the timing 
plans for both ramp metering and street signals to proactively prevent queuing, stemming from 
either recurrent congestion or from the occurrence of incidents. Instead of explicitly modeling 
microscopic traffic flow dynamics for on-ramp and off-ramp impacts, the integrated ramp 
metering and signal control will be made based on a path-based dynamic network model which 
enables predictions of network impacts of recurrent and non-recurrent traffic through explicitly 
modeling path-level travel behavior. The architecture learns not only historical traffic patterns 
but also has the potential to be fine-tuned with real-time data. 

 
The project is divided into four major tasks: 
 

Task 1: Identify and Process (pre-COVID) Various Data Sources for in-Depth Data 
Analytics and System Control 

The following data are collected, processed, and integrated for network modeling and further 
development of control strategies in the TSMO 1 system, as shown in Figure 1: 

• Transportation network data (GIS model) for the TSMO 1 area. 
• Traffic counts by vehicle classes on local streets, intersections, and highways in the 

TSMO 1 area. 
• Traffic speed data for highways in the region and major arterials within the TSMO 1 area. 
• Existing signal timing schemes for selected intersections and planned ramp metering 

schemes. 
• Management goals in the TSMO 1 area, such as queue limits on on-ramp and off-ramps, 

as well as on local streets. 
• Historical incident data, including the geographical scope of the closures, lane closure 

configurations, crashes, and past events that substantially influence traffic in the TSMO 1 
area. 
 

Task 2: Establish a Dynamic Network Model for the TSMO 1 System 
An open-source mesoscopic network analysis tool, MAC-POSTS (Mobility Data 

Analytics Center - Prediction, Optimization, and Simulation toolkit for Transportation 
Systems)1, developed by Mobility Data Analytics Center (MAC) at Carnegie Mellon University 
(CMU) is used to simulate the dynamic traffic flows over time in the TSMO 1 area. The TSMO 
1 regional network, together with the construction plans and/or incidents, will be coded into 
MAC-POSTS. A dynamic network model for TSMO 1 is established that provides estimated 5-
minute origin-destination demand among all street segments that vary by time of day. The travel 
demands in the area are carefully calibrated using multi-day data sets collected in Task 1. With 
the estimated demand, the network model is then able to replicate the close-to-real-world traffic 
dynamics. It also has the capacity to model dynamic traffic evolution with the consideration of 
any other travel control and traffic demand management strategies than ramp metering. This 
model adopts state-of-the-art traffic models and is much more computationally efficient than 
other microscopic models that are extremely labor-intensive to establish. It should be noted that 
this dynamic network model can be leveraged for MDOT to make optimal decisions on capital 



9 
 

investment, incident management, traffic control, queue warnings, traveler advisory, and other 
ITS strategies in general. 

 
Task 3: Develop Control Strategies for Ramp Metering and Local Signal Synchronization 

Based on the dynamic network work developed in Task 2, two control strategies i.e., 
ALINEA and local signal synchronization (LSC), are used to control metering rates at different 
meters along the corridor and related arterials signals to minimize system-level congestion while 
ensuring equity among highways and arterials. While ALINEA operates on each ramp 
independently, the LSC takes into account the coordination of ramp meters and local signalized 
intersections. 

 
Task 4: Evaluate the Effectiveness of Optimal Corridor Control for Each Scenario 

This task evaluates the TSMO 1 system performance before and after the deployment of 
corridor control under different scenarios. The performance metrics include total traffic delay, 
average travel time, emissions, energy use, vehicle-miles traveled, congestion attributed to 
highway or local roads, etc. This will be completed in a simulation environment but can serve as 
a benchmark of control system performance before field deployment in the future. 

 
The rest of the report details the methodologies to complete these tasks and discusses the 

results and findings. 

 
Figure 1. Location of TSMO 1 System 

4. Data collection and processing 
TSMO is the State Highway Administration (SHA)’s integrated approach to planning, 

engineering, operating, and maintaining existing facilities to maximize their full-service 
potential, and ultimately improve the safety, security, and reliability of the transportation 
network [98]. The TSMO 1 system, located in the western region of Baltimore, MD, 
encompasses two main east-west highway corridors: I-70 and US-40, as shown in Figure 1. 
Particularly, this area has multiple locations of signal control and ramp metering control points 
and the TSMO program provides sufficient data and infrastructure resources as a testbed for 
implementing/testing integrated corridor control strategies. 

 
This section briefly discusses the multiple data sources used in this project, including 

network topological data, traffic count data, traffic speed data, signal timing plans, and incident 
data. 
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4.1 Network Description 
To build the network, data from multiple sources is used and fused together. The original 

network topological data is from INRIX [99], while the link geometry information is acquired 
from Whitman, Requardt & Associates (WRA) [100] as well as Topologically Integrated 
Geographic Encoding and Referencees (TIGER) census road shapefiles [101]. The number of 
lanes for the roads is extracted from Google Maps [102]. To better model the traffic dynamics 
within this area, we expand the modeling area by incorporating the surrounding areas which can 
also generate traffic demand using the TSMO 1 system. 

 
We further consolidate the network in order to make it more robust for dynamic traffic 

simulation and alleviate the computation complexity [103]. The original network data is trimmed 
to ensure there are no isolated nodes and links. In addition, some neighboring links with small 
lengths and the same speed limit are further combined, which can substantially reduce the 
network size. The OD connectivity is also examined in order to correctly estimate OD demand. 
Figure 2 depicts a part of the network before and after the consolidation. 

 
The final network model used for the subsequent analyses contains 1,509 links, 775 

nodes, 124 origins/destinations, and 15,376 OD pairs, as shown in Figure 3. 

 

(a) Before consolidation 

 

(b) After consolidation  

Figure 2. Illustration of Network Consolidation (blue line: link, green dot: node) 
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Figure 3. An Overview of the TSMO Network 

 
4.2 Traffic Counts 

Traffic count data represents the vehicle counts passing by a certain location, and it is 
usually collected by loop detectors, tubes, or manual counting. In this project, the count data is 
provided by the MDOT. However, due to the scarcity of count data and in order to better 
calibrate the model, data was collected from the available counts from 2017 to 2021, which 
include both pre-COVID and COVID traffic conditions. In order to estimate a baseline (on a 
recurrent traffic day) travel demand, the count data excludes weekends, holidays, as well as any 
days affected by incidents such as accidents, road closures, or hazardous weather conditions. 

The count data is carefully examined, cleaned, and matched to the links in the 
transportation network. Two vehicle types, i.e., cars and trucks, are counted separately in the 
data, which represent smaller private or ride-hailing vehicles, and larger freight trucks, 
respectively. In total, there are 153 locations with valid car and truck volumes, as shown in 
Figure 4. 

 
Figure 4. An overview of the traffic count locations 
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4.3 Traffic Speed Data 
Traffic speed data is provided by INRIX and obtained from Regional Integrated 

Transportation Information System (RITIS) [104] for the weekdays during 04/01/2017- 
12/31/2017. Speeds of different vehicle types are measured separately, and hence both passenger 
car speeds and freight truck speeds are available. All speed data is measured every five minutes 
of each day, and we average the data for different days in 2019 and aggregate the data to 15-
minute intervals. There are a total of 537 links with valid car and truck speed measurements, as 
shown in Figure 5. 

 
4.4 Other Data 

Besides the traffic counts and traffic speed data, existing signal time plan was also 
obtained for ramps and local intersections of interest from SHA, which can be integrated into the 
dynamic network model. Meanwhile, the incident data was acquired from Waze [105], archived 
by SHA, which includes accidents, road closures, or hazardous weather conditions within this 
area. The incident data is used to distinguish non-recurrent traffic data from recurrent one and 
thus identify the typical non-recurrent traffic flow patterns. 

 

 
Figure 5. An overview of the Speed Data (links with observed speed data are marked in red) 

 

5. Dynamic Network Modeling 
This section describes traffic dynamics modeling for the TSMO 1 network. 
 

5.1 Mesoscopic Multi-Class Traffic Flow Model 
In this project, the traffic dynamics in the region are simulated in high spatio-temporal 

resolutions. The MAC at CMU develops an open-source multi-class dynamic network modeling 
tool, MAC-POSTS, which is capable of simulating network-wide traffic dynamics for any 
general networks consisting of freeways, arterials, and local streets [19]. MAC-POSTS adopts 
the state-of-art mesoscopic traffic flow model and can scale up to regional-level transportation 
networks. MAC-POSTS can be calibrated to replicate real-world traffic conditions and predict 
the impact of different traffic scenarios, such as tolling, work zones, events, and incidents. 



13 
 

For modeling the heterogeneous vehicle flow on links, MAC-POSTS adopts a multi-class 
traffic flow model proposed in [106], which can model the flow dynamics consisting of multiple 
classes of vehicles with distinct flow characteristics. It pragmatically generalizes the CTM to 
multi-class heterogeneous vehicle flow. It includes the concept “physical space split” for each 
class, which is the fraction of physical space that each vehicle class occupies and uses to 
progress. Then the “perceived equivalent density” of each class is calculated, representing the 
equivalent density perceived by some vehicle class, if converting all other class vehicles to this 
class based on the space they occupied. At each loading time interval, vehicles move through 
cells following the relations between upstream demand and downstream supply computed using 
the “physical space split,” and “perceived equivalent density,” as well as the fundamental 
diagram of each class. The main feature of this multi-class flow model is that it encapsulates 
three mixed flow regimes: one class can overtake the other class under free flow, overtaking 
occurs restrictively under semi-congestion, and no overtaking can occur under congestion. More 
details can be found in [106]. 

 
As for a node model for vehicular flow evolution through junctions, MAC-POSTS uses a 

relaxed version of the general node model introduced by [15]. For junction 𝑗𝑗, denote the set of all 
upstream links by 𝐴𝐴→𝑗𝑗, and the set of all downstream links by 𝐴𝐴𝑗𝑗→. Also, denote the turning 
proportion from any upstream link 𝑎𝑎 ∈ 𝐴𝐴→𝑗𝑗to any downstream link 𝑏𝑏 ∈ 𝐴𝐴𝑗𝑗→at time 𝑡𝑡 by 
ψ𝑎𝑎→𝑏𝑏(𝑡𝑡), where ∑ ψ𝑎𝑎→𝑏𝑏(𝑡𝑡)𝑏𝑏∈𝐴𝐴𝑗𝑗→ = 1,∀𝑎𝑎 ∈ 𝐴𝐴→𝑗𝑗. The flux from any upstream link 𝑎𝑎 ∈ 𝐴𝐴→𝑗𝑗 to 
downstream link 𝑏𝑏 ∈ 𝐴𝐴𝑗𝑗→: 

𝑞𝑞𝑎𝑎→𝑏𝑏 = min{𝑑𝑑𝑎𝑎(𝑡𝑡)𝜓𝜓𝑎𝑎→𝑏𝑏(𝑡𝑡), 𝑠𝑠𝑏𝑏(𝑡𝑡)
𝑑𝑑𝑎𝑎(𝑡𝑡)𝜓𝜓𝑎𝑎→𝑏𝑏(𝑡𝑡)

∑ 𝑑𝑑𝑎𝑎(𝑡𝑡)𝜓𝜓𝛼𝛼→𝑏𝑏(𝑡𝑡)𝛼𝛼∈𝐴𝐴→𝑗𝑗
} (1) 

Where for any link 𝑎𝑎, the link demand 𝑑𝑑𝑎𝑎(𝑡𝑡) and supply 𝑠𝑠𝑎𝑎(𝑡𝑡) can also be computed for deciding 
the number of vehicles to be moved through the junctions. 

 
Figure 6. Implementation of link and node models 

 
Note that the model successfully includes the effect of queuing and spill-back in the 

dynamic network loading. Figure 6 depicts the implementation of the above link and node 
models, where the arrows represent how we move different classes of vehicles within the links 
and among different links through the nodes. 
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5.2 Signal Control Modeling 
To properly account for traffic controls, the flow updating rules for the CTM in the 

dynamic network model are modified to model the effects of signalized intersections and ramp 
meters on traffic flows. 

 
5.2.1 Signalized Intersection 

In the original CTM, the relation of the flow 𝑞𝑞 and the density 𝑘𝑘 is in the form: 

𝑞𝑞 = min �𝑣𝑣𝑣𝑣, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢�𝑘𝑘𝑗𝑗 − 𝑘𝑘�� (2) 

Where 𝑞𝑞 is thel link flow; 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 is the saturation flow rate; 𝑣𝑣 is the free flow speed; 𝑘𝑘 is the 
density; 𝑘𝑘𝑗𝑗 is the jam density; and 𝑢𝑢 is the backward propagation speed. 
 

To model the flow updates at signalized intersections, the major modification is to make 
the maximum flow 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 in Eq.2 time-dependent in accordance with the signal timing. 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = �
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡 ∈ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
0,                𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3) 

Where it switches between 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 (green phase) and zero, the end cell of an intersection approach 
will serve as a functioning signal, and the flow dynamics still approximate the kinematic wave 
model. The traffic at a typical intersection is grouped into movements that go through the 
conflicting area alternatively during their green time. 
 
Signalized Diverges 

The flow diverges at an intersection where the traffic stream on a single link split into left 
turn, through, or right turn movements. In the modeling, the intersection behind the stop line is 
virtually enlarged to store the turning vehicles for waiting to be serviced by certain phases. 
Denote the end cell 𝐶𝐶𝑠𝑠

𝑗𝑗of a link 𝑙𝑙𝑗𝑗 approaching a signalized intersection, and the flow 
conservation equation is: 

𝑛𝑛𝑠𝑠(𝑡𝑡 + 1) = � 𝑛𝑛𝑠𝑠𝑚𝑚(𝑡𝑡)
𝑚𝑚=𝐿𝐿,𝑅𝑅,𝑇𝑇

+ 𝑦𝑦𝑠𝑠−1,𝑠𝑠(𝑡𝑡) − � 𝑦𝑦𝑠𝑠,𝑠𝑠+1
𝑚𝑚 (𝑡𝑡)

𝑚𝑚=𝐿𝐿,𝑅𝑅,𝑇𝑇

 
(4) 

Where the superscripts of 𝐿𝐿, 𝑅𝑅, and 𝑇𝑇 denote the left turn, right turn, and through movement, 
respectively; 𝑛𝑛𝑠𝑠(𝑡𝑡) denotes the number of vehicles in cell 𝑠𝑠 at time interval 𝑡𝑡; 𝑛𝑛𝑠𝑠𝑚𝑚(𝑡𝑡) denotes the 
number of vehicles under movement 𝑚𝑚 in cell 𝑠𝑠 at time 𝑡𝑡; 𝑦𝑦𝑠𝑠−1,𝑠𝑠(𝑡𝑡) is the number of vehicles 
moving from cell 𝑠𝑠 − 1 to cell 𝑠𝑠 at time interval 𝑡𝑡; 𝑦𝑦𝑠𝑠,𝑠𝑠+1

𝑚𝑚 (𝑡𝑡) is the number of vehicles under 
movement 𝑚𝑚 moving from cell 𝑠𝑠 to cell 𝑠𝑠 + 1 at time interval 𝑡𝑡; The cell 𝐶𝐶𝑠𝑠−1

𝑗𝑗  is the preceding 
cell of 𝐶𝐶𝑠𝑠

𝑗𝑗 . The flux into and out of cell 𝐶𝐶𝑠𝑠
𝑗𝑗  are: 

𝑦𝑦𝑠𝑠−1,𝑠𝑠(𝑡𝑡 + 1) = min{𝑛𝑛𝑠𝑠−1(𝑡𝑡),𝑄𝑄𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿𝑠𝑠�𝑁𝑁𝑠𝑠(𝑡𝑡) − 𝑛𝑛𝑠𝑠(𝑡𝑡)�} (5) 

𝑦𝑦𝑠𝑠,𝑠𝑠+1
𝑚𝑚 (𝑡𝑡 + 1) = min{𝑛𝑛𝑠𝑠𝑚𝑚(𝑡𝑡), 𝑞𝑞𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡), 𝛿𝛿𝑠𝑠+1�𝑁𝑁𝑠𝑠+1𝑚𝑚 (𝑡𝑡) − 𝑛𝑛𝑠𝑠+1𝑚𝑚 (𝑡𝑡)�},𝑚𝑚 = 𝐿𝐿,𝑅𝑅,𝑇𝑇 (6) 

Where 𝑄𝑄𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum number of vehicles that can flow into cell 𝑠𝑠 during time interval 
𝑡𝑡; 𝑁𝑁𝑠𝑠(𝑡𝑡) is the maximum number of vehicles that can cell 𝑠𝑠 can hold at time interval 𝑡𝑡; 𝑞𝑞𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) 
is the maximum number of vehicles that can flow out of cell 𝑠𝑠 during time interval 𝑡𝑡, which is 
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controlled by the signal timing plan; 𝑁𝑁𝑠𝑠+1𝑚𝑚 (𝑡𝑡) is the storage capacity for vehicles under 
movement 𝑚𝑚. 

Signalized Merges 
The flow updating rule for the signalized merge is: 

𝑛𝑛𝑠𝑠+1(𝑡𝑡 + 1) = 𝑛𝑛𝑠𝑠+1(𝑡𝑡) + 𝑦𝑦𝑠𝑠,𝑠𝑠+1(𝑡𝑡) − 𝑦𝑦𝑠𝑠+1,𝑠𝑠+2(𝑡𝑡) (7) 
Where 𝑠𝑠 +  1 is the start cell index for the downstream link, i.e., the first cell of the downstream 
link that receives the stream with cell index of 𝑠𝑠 serviced by the signal. The incoming flux 
𝑦𝑦𝑠𝑠,𝑠𝑠+1(𝑡𝑡) is determined by the signal timing plan: 

𝑦𝑦𝑠𝑠,𝑠𝑠+1(𝑡𝑡) = min{𝑛𝑛𝑠𝑠(𝑡𝑡), 𝑞𝑞𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡), 𝛿𝛿𝑠𝑠�𝑁𝑁𝑠𝑠(𝑡𝑡) − 𝑛𝑛𝑠𝑠(𝑡𝑡)�} (8) 
While the outgoing flux 𝑦𝑦𝑠𝑠+1,𝑠𝑠+2 is computed by the normal CTM cell. 
 
5.2.2 Metered Freeway on-Ramp 

Modeling ramp meters only needs to deal with the metering rate 𝑅𝑅𝑡𝑡 at time 𝑡𝑡. The 
updating rule at a freeway merge section is as follows: 

𝐷𝐷𝑅𝑅𝑡𝑡 = min(𝐷𝐷𝑅𝑅𝑡𝑡 ,𝑅𝑅𝑡𝑡, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚) (9) 
𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑀𝑀𝑡𝑡 + 𝐷𝐷𝑅𝑅𝑡𝑡  (10) 

𝑆𝑆𝑡𝑡 = min(𝑆𝑆𝑀𝑀𝑡𝑡 ,𝐷𝐷𝑡𝑡) (11) 

𝑓𝑓𝑀𝑀𝑡𝑡 =
𝐷𝐷𝑀𝑀𝑡𝑡

𝐷𝐷𝑡𝑡 𝑆𝑆
𝑡𝑡 (12) 

𝑓𝑓𝑅𝑅𝑡𝑡 =
𝐷𝐷𝑅𝑅𝑡𝑡

𝐷𝐷𝑡𝑡 𝑆𝑆
𝑡𝑡 (13) 

Where 𝑅𝑅𝑡𝑡 is the ramp metering rate; 𝐷𝐷𝑅𝑅𝑡𝑡  is the ramp demand at time t; 𝐷𝐷𝑡𝑡 is the demand upon the 
beginning cell of the link downstream of the ramp; 𝐷𝐷𝑀𝑀𝑡𝑡  demand on mainline competing with the 
ramp demand; 𝑆𝑆𝑀𝑀𝑡𝑡  supply of the beginning cell of the downstream link; 𝑆𝑆𝑡𝑡 is the total service 
flow rate; 𝑓𝑓𝑅𝑅𝑡𝑡 is the outflow from ramp; and 𝑓𝑓𝑀𝑀𝑡𝑡  is the outflow from upstream mainline. 
 

The modification is twofold: (i) the ramp demand to the merge point is bounded not only 
by actual demand and the flow capacity, but also by the metering rate executed at that time step 
(Eq.9) (ii) in the overflow or congestion situation, flow from the freeway mainline and the ramp 
will be distributed to the downstream link proportionally to their relative demand (Eq.11-13). 

 
5.3 Model Calibration 

Before applied to practical applications, the dynamic network model needs to be 
calibrated in order to approximately reproduce the actual traffic conditions. To this end, multiple 
data sources collected in Section 4 are used and a data-driven calibration framework is adopted 
to calibrate the model. 
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5.3.1 Multi-Class Dynamic OD Demand Estimation 
This calibration is referred to as the multi-class dynamic OD demand estimation 

(MCDODE) problem, which aims to estimate the time-dependent vehicle demand for each OD 
pair in the study period. Different from the traditional dynamic OD demand estimation (DODE) 
problem, which typically deals with single-class vehicle demand, this MCDODE framework is 
able to differentiate, and estimate demands for multi-class vehicles, which enables further high-
granularity traffic simulation. 

 
The MCDODE is formulated as an optimization problem aiming to estimate travel 

demand to minimize the discrepancy between the observed data and the simulation results (i.e., 
traffic count and travel speed). The objective function is as follows: 

min{𝒒𝒒𝑐𝑐𝑐𝑐𝑐𝑐,𝒒𝒒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}  ℒ =  ℒ1  +  ℒ2  +  ℒ3  +  ℒ4  
= 𝑤𝑤1(|𝒚𝒚𝑐𝑐𝑐𝑐𝑐𝑐′ − 𝒚𝒚𝑐𝑐𝑐𝑐𝑐𝑐|22) + 𝑤𝑤2(|𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′ − 𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|22) (14) 
+𝑤𝑤3(|𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐′ − 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐|22) + 𝑤𝑤4(|𝒛𝒛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′ − 𝒛𝒛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|22)  

Where 𝒒𝒒𝑐𝑐𝑐𝑐𝑐𝑐 and 𝒒𝒒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the car and truck demands, respectively; 𝒚𝒚𝑐𝑐𝑐𝑐𝑐𝑐′  and 𝒚𝒚𝑐𝑐𝑐𝑐𝑐𝑐are the 
observed and estimated car flows, respectively; 𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′  and 𝒚𝒚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the observed and estimated 
truck flows, respectively; 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐′  and 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐 are the observed and estimated car travel times, 
respectively; 𝒛𝒛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′  and 𝒛𝒛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the observed and estimated truck travel times, respectively; 
𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3 and 𝑤𝑤4 are the weights to balance the five terms in the optimization. 
 

More details of the calibration framework and the computational-graph-based solution 
method are omitted here, and interested readers are referred to our previous studies [19]. 

 
5.3.2 Calibration Results 

Simulated traffic conditions are calibrated to match the observed morning peak hour (5 
AM - 12 PM) traffic conditions. MAC-POSTS simulates the movements of all vehicles in the 
studied network with high spatial (around 50 meters) and temporal (5 seconds) resolution. As 
with the information provided, the assumption is that 60% of cars are adaptive to the traffic 
information, while 40% of cars and all trucks stick to the pre-scribed routes. Note that MCDODE 
aims to estimate the baseline travel demand on a recurrent traffic day. As for non-recurrent 
traffic patterns, time-varying travel demand in the TSMO 1 regional network is assumed to be 
the same as the baseline scenario. However, route choices of trips during construction/incident 
will change in response to the level of congestion at various parts of the network evolving by the 
time of day. 

 
Figure 7 presents the comparison between simulated 5-minute traffic volumes and 

observed 5-minute traffic volumes, in which the vertical axis is the simulated count, and the 
horizontal axis is the observed count. The coefficient of determination 𝑅𝑅2, as a measure of 
goodness of fit, is 0.730 and 0.924, for the car flow and truck flow, respectively. The calibration 
results are considered to be reasonably well for such a large-scale network, advantageous than 
many other studies attempting to replicate real-world traffic conditions using network 
simulations. The discrepancy between the observed flow and simulated flow is attributed to 
several factors, of which the main reasons are twofold: O-D connectors in the peripheral areas of 
the network can direct flow from/to using links with volume counters, but they do not necessarily 
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influence the route choices of traffic across the regional network (this is the case of many dots 
representing an overly small or overly large observed values); the models of traffic flow 
dynamic, link/node capacity and route choices can be improved to represent transportation 
systems more realistically. The former problem can be addressed by carefully generating O-D 
connector(s) in regards to counter locations, whereas the latter problem can be alleviated by 
implementing more sophisticated traffic models. Both will be further addressed in future 
research. 

 
Figure 7. Traffic Count Calibration (left: car count, right: truck count) 

 
Overall, this model shows relatively good performance in capturing the trend of the 

observed data and this indicates that the proposed regional model can reflect the actual traffic 
dynamics in the whole TSMO 1 area to some extent. The calibrated model lays the ground for 
the following development and assessment of different control strategies. 

 
6. Control Strategies 

This section describes two control strategies developed to control metering rates at 
different metering locations along the corridor and related local arterial signals to minimize 
system-level congestion while ensuring equity among highways and arterials. 

 
6.1 ALINEA 

ALINEA is a well-known traffic-responsive metering algorithm [41] which tracks the 
difference between desired downstream occupancy (typically the critical occupancy) and current 
occupancy with ramp metering rate. Mathematically, it can be formulated as follows: 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟(𝑡𝑡 − 1) + 𝐾𝐾𝑅𝑅�𝑂𝑂𝑐𝑐 − 𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)�                                    (15) 

Where 𝑟𝑟(𝑡𝑡) is the metering rate for the current time step and 𝑟𝑟(𝑡𝑡 − 1) is the metering rate in the 
previous time step, 𝑂𝑂𝑐𝑐 is the target occupancy to be maintained which is usually slightly lower 
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than the critical density (corresponding to the capacity flow), and 𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) is the current 
occupancy. 𝐾𝐾𝑅𝑅 is the only parameter to be adjusted in implementation. 
 

Previous research has shown that ALINEA control can reduce total travel time 
significantly [60, 107, 108, 109]. But it is for an isolated ramp only, lacking consideration of 
coordination among ramp meters and local signalized intersections. 

 
6.2 Local Synchronization Control 

Congestion that originates at closely spaced highway junctions and intersections, such as 
freeway interchange areas, could spread and significantly worsen the performance of the entire 
transportation system. To address this issue, a local synchronization control (LSC) scheme has 
been developed to coordinate the signal control system on arterials and the ramp metering 
control on ramps, effectively alleviating congestion. 

 
The LSC scheme effectively manages queues at critical locations by coordinating 

neighboring intersection traffic signals and freeway on-ramp meters, whenever they are 
available. Its primary objective is to reduce the influx of traffic into heavily congested sections 
while increasing the outflow of traffic. By doing so, the scheme prevents queues from 
developing into the catalysts for gridlock, thereby significantly improving the overall 
performance of the transportation system. 

 
The LSC scheme is illustrated in Figure 8 [20]. The LSC focuses on closely monitoring 

traffic operations, specifically the formation of vehicle queues on critical links. These queues, if 
not promptly addressed, can escalate into local gridlock or even network-wide congestion. When 
the LSC system identifies the possibility of queue spillback, it takes over the regular traffic 
operations and implements synchronized control actions aimed at efficiently discharging the 
queued vehicles while concurrently reducing the inflow of traffic. During this period of LSC 
activation, the primary objective is to clear the critical queue. Once the queue has been 
successfully managed and cleared, normal traffic operations are resumed, allowing the system to 
function as usual. 
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Figure 8. Flowchart of Local Synchronization Control Scheme [20] 

 
Road sections that commonly benefit from synchronization treatment are typically short 

in length and have significant traffic volumes converging from one or both ends. These sections 
include on-ramps that are controlled by either on-ramp meters, traffic signals regulating the 
inflow of traffic, or both. They also encompass off-ramps that lead to signalized intersections, as 
well as short road segments that connect two consecutive traffic signals. These types of road 
sections are commonly encountered in freeway interchange areas. 

 
Specifically, for a metered on-ramp, a queue detector is positioned at the upstream end of 

this on-ramp. When queue spillback is detected, the synchronization operation is activated, 
implementing the following steps: 

• Disabling the current meter: The meter that regulates the flow of vehicles onto the ramp 
is turned off. This allows ramp traffic to freely merge with the traffic on the freeway, 
without any restrictions or delays. 

• Reducing maximum green time of feeding phases: The duration of the green signal for 
the traffic signals controlling the lanes that feed into the on-ramp is decreased. By 
reducing the maximum green time, the aim is to prioritize the discharge of vehicles from 
the congested ramp, thereby alleviating the queue and preventing further spillback. 
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These measures work in tandem to synchronize the traffic flow and alleviate congestion 
on the metered on-ramp. By temporarily suspending the metering process and adjusting the 
signal timings of the feeding phases, the system aims to efficiently clear the queue and restore 
smooth traffic operations. 

 
As for the normal operations in Figure 8. it just uses ALINEA to calculate the metering rate. 
 
Overall, the LSC scheme has three important factors: 

• Queue detector position: The positioning requires the observation or knowledge of how 
local congestion evolves during the study period. In the established dynamic network 
model, queue detection is modeled as tracking the occupancy changes at the detection 
locations. Particularly, if the traffic flow dynamics are modeled using the CTM, the 
occupancy will be naturally emulated as the ratio of the number of vehicles to the holding 
capacity at the location of interest. 

• Virtual cycle of the synchronization operation: The virtual cycle specifies the duration of 
synchronization operations, which continues until the virtual cycle is completed. If the 
queue persists, another virtual cycle will be initiated, or normal operations will resume if 
the queue is cleared. The length of the virtual cycle can be determined in conjunction 
with queue detection and is set equal to the number of intervals required for the queued 
traffic to traverse the entire congested section in the CTM. 

• Adjustment factor of synchronization intensity: The adjustment factor governs the extent 
to which the affected phases are metered, controlling the duration of the discharging 
phase increase and the decrease of the feeding phases. Its purpose is to prevent potential 
negative impacts resulting from an overly aggressive LSC strategy, such as excessively 
reducing the duration of the feeding phases to their minimum green time. 
 

7. Experiments 
This section examines the proposed control strategies on two locations of I-70 highway. 

Those two locations are selected in regard to their recurrent traffic congestion in the AM peak. 
The congestion is primarily attributed to merging traffic flow from its on-ramp. Consequently, 
implementing ramp metering may be able to alleviate the merging conflict and thus has great 
potential to reduce I-70 congestion.  For each location, three cases of calibrated traffic demand 
are tested: (1) no ramp metering control (i.e., baseline), (2) ALINEA control, and (3) LSC 
control. Simulations with various demand and lane closure caused by incidents are also 
conducted to test the effectiveness of control strategies under the occurrence of potential 
congestion and incidents. Results of different scenarios are summarized, and the best control 
strategy is identified based on metrics regarding both traffic conditions and environmental 
impacts. 

 
7.1 Scenarios set-up 

Location A is on the merging ramp connecting Marriottsville Rd northbound to I-70 
eastbound (shown as the link between node 3165 and 3160 in Figure 9). The local signalized 
intersection (Resort Road/Marriottsville Road) on the upstream of ramp is also considered. 
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Figure 9. Illustration of the Location A on I-70 Highway 

 
Location B is the ramp connecting US-29 southbound to I-70 eastbound (shown as the 

link between node 3143 and 3145 in Figure 10). Similarly, a local signalized intersection on its 
upstream is considered. 

 
Figure 10. Illustration of Location B on I-70 Highway 

For each location, three scenarios are set up to investigate the impact of different ramp 
metering strategies on local traffic: (1) baseline: no ramp metering control, (2) ALINEA control; 
and (3) LSC control. In the simulations, 40% of cars stick to the prescribed routes and 60% 
perform adaptive routing due to the change of traffic conditions, while all trucks use prescribed 
routes. This is learned as part of the baseline network simulation calibration. The aggregated 
traffic metrics within the local roads around the controlled ramp and downstream roads are used 
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to analyze the traffic impacts, including vehicle hours traveled (VHT), also known as total travel 
time, vehicle miles traveled (VMT), average travel time, average travel distance, average vehicle 
delay which is the average waiting time at intersections for two vehicle classes, and 
environmental impacts such as fuel use, CO2, NOX, etc. Selected roads used for measure system 
performance for each control location are highlighted in yellow in Figures 11 and 12. 

 
Figure 11. Selected links for location A 

 

 
Figure 12. Selected Links for Location B 

 
For the control strategy with the best performance, five were set up scenarios for each 

location to test its robustness under different demand levels and a possible occurrence of 
incidents. Four of the five scenarios use calibrated demand multiplied by scalars ranging from 
0.9 to 1.2. The other scenario uses calibrated demand with lane closure caused by hypothetical 
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incidents on I-70. The incident occurs on the eastbound I-70 between the intersections 
Marriottsville Rd/I-70 and US-29/I-70, resulting in the reduction in the number of lanes from 2 
down to 1 in the eastbound direction from 7:50 AM to 8:20 AM and the lane reopens after 8:20 
AM. 

 
7.2 Results of Scenarios with Calibrated Demand 

Tables 1 and 2 present the aggregated metrics of different scenarios with the calibrated 
demand. The evaluation in each location considers roads near the controlled ramp of interest, 
shown in Figures 11 and 12. The impact to other areas is generally negligible. 

 
For location A, both the ALINEA and LSC methods show the ability to substantially 

reduce average travel time and VHT for both vehicle classes. ALINEA reduces VHT by 10% 
and average travel time by 5%, whereas LSC reduces VHT by 15% and average travel time by 
9%. VMT would not be reduced as much since travelers are likely to take deviated routes due to 
ramp metering. Overall, LSC has a better performance in reducing overall congestion since it 
avoids severe congestion on the ramp and its spill over to local streets. Additionally, both 
methods effectively reduce fuel use and emissions for cars, ranging from 7% to 10%. However, 
the change in metrics for trucks is small before and after the implementation of ramp metering 
control. This can be attributed to the dominance of cars in the traffic flow and their higher 
sensitivity to the control strategies implemented. LSC outperforms ALINEA in terms of a greater 
reduction in average travel time, VHT and VMT. However, when it comes to emissions, both 
ALINEA and LSC exhibit similar performance without significant differences. 

 
For location B, similar results can be found that both the ALINEA and LSC methods are 

able to reduce average travel time compared to the no control scenario, and LSC outperforms 
ALINEA in terms of achieving a greater reduction in average travel time and delay for both 
vehicle classes. ALINEA does not necessarily reduce VHT or VMT, implying its impact to 
traffic mitigation is minimal in this case. However, LSC is consistently effective in managing 
traffic, reducing average travel time by 10% and average travel time by 5%. Similar to the results 
in location A, LSC can effectively reduce fuel use and emissions, ranging from 5% to 9%, 
outperforming ALINEA. 

 
Table 3 summarizes the average vehicle delay on the ramp and (immediate) downstream 

highway segment for the two locations. It can be seen that ALINEA causes a larger average 
delay on the ramp and LSC is able to effectively balance the delay on both controlled ramp and 
downstream highway, ensuring equity among highways and arterials. 

 
7.3 Results of Scenarios with Various Demand Level and Incident Effect 

After identifying LSC as the preferred control strategy, the effectiveness and sensitivity 
of LSC are tested to various demand levels and the possible occurrence of an incident on I-70. 
Four scenarios are created for each location: (1) reduced demand (scalar of 0.9), (2) original 
calibrated demand (scalar of 1.0), (3) increased demand (scalar of 1.1), (4) increased demand 
(scalar of 1.2), and (5) calibrated demand with an incident. The aggregated metrics are 
summarized in Tables 4 and 5. 
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The results show that for both two locations, when demand increases, both traffic and 
environmental impact metrics remains relatively unchanged, implying LSC is able to 
accommodate demand within a reasonable range. Even under a major incident on I-70, the 
average travel time does not change as much for both cars and trucks, ensuring a robust and 
satisfactory performance of LSC with different levels of demand and incidence occurrence. It is 
worth noting that the average delay and travel time with the selected areas (Figures 11 and 12) 
tend to increase slightly because vehicles may deviate to use this selected area as a result of its 
improved performance. This deviation is more profound when an incident occurs on I-70, 
especially for location B. 

 
8. Conclusion 

This project develops control strategies for ramp metering and local signal 
synchronization with the establishment of a simulation-based dynamic network model for 
Maryland's TSMO 1 system. First, a mesoscopic network simulation model is developed with a 
signal control module for coordinated signalized intersections and ramp metering. Second, multi-
source data are collected, and a data-driven calibration framework is adopted to calibrate the 
dynamic network model. The result demonstrates the calibrated model has a satisfactory 
accuracy to reproduce the actual traffic conditions. Mesoscopic network simulation is also 
computationally efficient to performance. One run of all 250,000 vehicles across 15,376 O-D 
pairs takes less than three minutes on a regular i-5 desktop computer. Furthermore, two control 
strategies are developed and tested to control metering rates at different ramps along the I-70 
corridor with the objective of minimizing system-level congestion ensuring equity among 
highways and arterials. Finally, several scenarios with different demand levels, control strategies, 
and incident occurrence are created to examine the effectiveness and robustness of the proposed 
control methods. Results show that the LSC method outperforms ALINEA in terms of achieving 
a greater reduction in average travel time, VMT and VHT, and ensuring a good balance of 
vehicle delay on both ramps and immediate downstream highway segments. It is recommended 
to Maryland Department of Transportation to consider coordination among ramp metering and 
localized signal control to achieve the best performance and equity. The mesoscopic network 
simulation model developed for this project can also be quickly adopted for assessing and 
optimizing other ITS strategies as well, such as traffic routing, traveler information provision, 
tolling, HOV lanes, queue warning and incident management. 
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