

MARYLAND DEPARTMENT OF TRANPORTATION
STATE HIGHWAY ADMINISTRATION

RESEARCH REPORT

IMPLEMENTING MACHINE LEARNING WITH HIGHWAY
DATASETS

Yunfeng Zhang, Professor, Principal Investigator
Ross Cutts, P.E., Technical Lead

Jianshu Xu, Graduate Research Assistant

UNIVERSITY OF MARYLAND

FINAL REPORT

May 2021

SPR-Part B
MD-21-SHA/UM/5-23

This material is based upon work supported by the Federal Highway Administration
under the State Planning and Research program. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the author(s)
and do not necessarily reflect the views of the Federal Highway Administration or the
Maryland Department of Transportation. This report does not constitute a standard,
specification, or regulation.

i

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.
MD-21-SHA/UM/5-23

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
Implementing Machine Learning with Highway Datasets

5. Report Date
May 2021

6. Performing Organization Code

7. Author(s)
Dr. Yunfeng Zhang, Professor, University of Maryland (UMD)
Ross Cutts P.E., Technical Lead, MDOT SHA
Jianshu Xu, Graduate Research Assistant, UMD

8. Performing Organization Report No.

9. Performing Organization Name and Address
University of Maryland
Department of Civil and Environmental Engineering
College Park, Maryland 20742

10. Work Unit No.

11. Contract or Grant No.
SHA/UM/5-23

12. Sponsoring Agency Name and Address
Maryland Department of Transportation (SPR)
State Highway Administration
Office of Policy & Research
707 North Calvert Street
Baltimore MD 21202

13. Type of Report and Period Covered
Final Report

(October 2019-April 2021)

14. Sponsoring Agency Code
(7120) STMD - MDOT/SHA

15. Supplementary Notes

16. Abstract
Every year MDOT invests millions of dollars into testing geomaterials, digitizing historic records and capturing inventory and
condition data. Massive amounts of tabular data, documentation and imagery, which are relevant for planning and engineering
purposes, continue to be accumulated. The engineering characteristics of pavement or other materials can be estimated in the early
phase of the project. Additionally, scheduling and construction can be optimized by smart decision-making assistance enabled by
such machine learning models. This project enhanced the existing machine learning models with newly available data and
developed and tested new machine learning models for datasets of interest including drilling and pavement data, project duration
and highway right-of-way (ROW) image datasets. Various machine learning models were developed and trained for the selected
highway datasets including drilling data, pavement falling weight deflectometer (FWD) data, scheduling estimates using
reinforcement learning, ROW image QA/QC processing and object detection for three types of image objects, pavement core
thickness datasets. Tabular data neural network models for drilling data and pavement data were trained and used for dependent
variable prediction. A state-of-art object detection model using YOLO (You Only Look Once) v3 algorithm were also trained and
tested for detecting traffic barrier end treatments and insect blocking in ROW images. Reinforcement learning models for drilling
project schedule estimation were developed and tested using historical data records. Furthermore, random forest model was also
trained and tested for one type of drilling data – groundwater depth. These machine learning models can potentially be used to
assist with the decision-making process in project planning and construction and some of these models have been integrated with
existing working process in MDOT SHA. Improved cost effectiveness of the agency can be achieved by enhancing analysis
capabilities and improving decision-making through incorporating machine-learning into planning and engineering work
processes.

17. Key Words
Artificial intelligence, data processing, machine learning, neural
networks, object detection, random forest, reinforcement learning

18. Distribution Statement
This document is available from the Research Division
upon request.

19. Security Classif. (of this report)
None

20. Security Classif. (of this page)
None

21. No. of Pages
56

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ii

TABLE OF CONTENTS

LIST OF FIGURES ii

LIST OF TABLES vi

CHAPTER 1: INTRODUCTION

RESEARCH PROBLEMS & BACKGROUND 1

RESEARCH OBJECTIVES 2

RESEARCH APPROACH 2

CHAPTER 2: NEURAL NETWORK MODEL DEVELOPMENT

FOR HIGHWAY TABULAR DATASETS 6

CHAPTER 3: QA/QC PROCESSING IMAGE DATA AND

OBJECT DETECTION USING YOLO V3 MODELS 17

CHAPTER 4: REVIEW & DEVELOPMENT OF REINFORCEMENT LEARNING

MODEL FOR SCHEDULING ESTIMATION 37

CHAPTER 5: DEVELOPING RANDOM FOREST MODEL FOR

MARYLAND PRECIPITATION DATA 44

CHAPTER 6: SUMMARY & CONCLUSIONS 50

REFERENCES 55

iii

LIST OF FIGURES

Figure 1. General outline for machine learning methods adopted in this research 5

Figure 2. Architecture of feedforward neural network model for tabular data 6

Figure 3 Output and feature variables of the neural network model training for Grainsize data 7

Figure 4. Comparing the real SPT N bucketed data compared to the model derived SPT N

buckets. 9

Figure 5. Output and feature variables of the neural network model trained for SPT N data 9

Figure 6. Output and feature variables of the neural network model trained for SWM Infiltration

Pass/Fail data 10

Figure 7 Output and feature variables of the neural network model trained for Water depth data

 11

Figure 8 Output and feature variables of the neural network model trained for Refusal depth data

 12

Figure 9. Comparison of HMA pavement true value and predicted value from trained neural

network tabular regression model 13

Figure 10. RMSE and R2score values of HMA and Concrete pavement thickness regression

models 14

Figure 11 Scatter plot of Concrete Net Thickness prediction (horizontal axis is true value) 14

Figure 12. RMSE and R2score values of FWD regression models 15

Figure 13. Scatter plot of predicted and true value of FWD data (only D1, D2 values shown) 15

Figure 14. Training accuracy of three FWD classification models after adding predicted

pavement thickness to the training data feature list 16

Figure 15. Architecture of YOLO v3 spp (spatial pyramid pooling) model 19

Figure 16. Prepared training images from remote cameras with bounding boxes around objects to

be identified 20

Figure 17. Sample output image with ball objects identified by YOLO v3 model 20

Figure 18. Sample output image with ball objects identified by YOLO v3 model in an

overexposed photo from remote cameras 21

Figure 19. Objects of interest identified in ROW images 22

Figure 20. Prepared training images with bounding boxes around objects to be identified 23

iv

Figure 21. Training outputs from YOLO v3 spp model for traffic barrier end treatment detection

 24

Figure 22. Sample output image with traffic barrier end treatment identified by YOLO v3 model

 25

Figure 23. Sample output image with traffic barrier end treatment identified by YOLO v3 model

 25

Figure 24. Sample output image with traffic barrier end treatment object identified by YOLO v3

model 26

Figure 25. Sample output image with traffic barrier end treatment object identified by YOLO v3

model with tall grass in the background and dashed yellow line marking on the rod 26

Figure 26. Sample output image with traffic barrier end treatment object identified by YOLO v3

model with woods background and with close-up view of traffic barrier end treatment 27

Figure 27. Sample output image with traffic barrier end treatment object identified by YOLO v3

model with medium-scaled traffic barrier end treatment in the picture 27

Figure 28. Sample output image with traffic barrier end treatment object identified by YOLO v3

model with small-scaled traffic barrier end treatment in the picture 28

Figure 29. Sample output image with traffic barrier end treatment object identified by YOLO v3

model with traffic barrier end treatment on the left side of the roadway 28

Figure 30. Sample output image with traffic barrier end treatment object identified by YOLO v3

model with partial view of traffic barrier end treatment on the left 29

Figure 31. Sample output image with traffic barrier end treatment object identified by YOLO v3

model with inclined traffic barrier end treatment and shrubs in the background 29

Figure 32. Sample output image with traffic barrier end treatment identified by YOLO v3 model

with a bridge in the background 30

Figure 33. Schematics of QA/QC tasks for ROW images 31

Figure 34. Three prepared training images with bounding boxes around insect objects to be

identified: (a) cloud background; (b) roadway and wall background; (c) truck background 32

Figure 35. Training outputs from YOLO v3 spp model for insect blocking detection 33

Figure 36. Sample output image with insect objects identified by YOLO v3 model 34

Figure 37. Sample output image with 3 insect objects identified by YOLO v3 model 34

Figure 38. Sample output image with 1 insect object identified by YOLO v3 model 35

v

Figure 39. Sample output image with 1 insect object identified by YOLO v3 model 35

Figure 40. Sample output image with 2 insect objects identified by YOLO v3 model 36

Figure 41. The agent-environment interaction in reinforcement learning 37

Figure 42. Raw drilling project duration data 39

Figure 43. Illustration of sorted data samples in RL 40

Figure 44 Flowchart of reinforcement learning model for project schedule estimation 41

Figure 45. Comparison of resource demand metrics (gray plane) vs. actual project duration data

points (z axis or vertical axis = project duration; x axis, y axis = AB LF and SPT LF): (a)

Regressed Quadratic plane; (b) Regressed linear plane 42

Figure 46. Sample Q-table values after convergence of RL simulation 42

Figure 47. Comparison of predicted value from the Random Forest model (y axis) vs actual data

of true project duration in days (x axis) 43

Figure 48. Schematics of Random Forest classifier 44

Figure 49. Groundwater depth data samples 45

Figure 50. Hyper-parameter tuning for Random Forest model 47

Figure 51. Confusion matrices of Fast.ai neural network model and Random Forest model for

groundwater data 48

Figure 52. Performance results of Fast.ai neural network model and Random Forest model for

groundwater data 49

vi

LIST OF TABLES

Table 1. Comparison of object detection algorithms (adapted from Redmon and Farhadi 2018)
 17

Table 2. Performance of YOLO v3 spp model for traffic barrier end treatment detection in
images 24

Table 3. Comparison of accuracy of 5 test data groups with randomly allocated data 47

1

CHAPTER 1: INTRODUCTION

RESEARCH PROBLEMS & BACKGROUND

Every year MDOT invests millions of dollars into testing geomaterials and thus massive amounts

of engineering datasets as well as other data such as pavement and construction history data have

been accumulated over a long time period, which creates an excellent opportunity for

establishing deep learning models to enable reliable prediction of engineering characteristics and

other desired features from the massive datasets. If implemented, not only the engineering

characteristics of pavement or other materials can be estimated in the early phase of the project,

but also scheduling and construction can be optimized by smart decision-making assistance

enabled by validated machine learning models. Improved cost effectiveness of the agency can be

achieved by enhancing analysis capabilities and improving decision-making by incorporating

machine-learning into planning and engineering work processes.

For traditional supervised learning algorithms, suitable features need to be selected from raw

data according to engineering experience and professional knowledge. A classifier can then be

constructed, and the prediction task is converted into a classification problem which can be

solved by machine learning algorithms such as artificial neural networks. Deep learning is a

machine learning technique that allows computational models to learn representation of massive

and complex datasets without the need for explicit identification of prevalent features.

Convolutional Neural Network (CNN) is a successful deep learning algorithm that has achieved

record-striking performance especially in image classification and pattern recognition in the last

decade. Deep learning models can be trained to represent high-dimensional data by automatically

capturing the complex relations inherent with the datasets which traditional mathematical models

are difficult to describe (Goodfellow et al. 2016; LeCunn et al. 2015). Since explicit feature

definition is not required in advance, deep learning fits well with the need of automated tools for

highway data modeling and prediction. As an evolved form of neural networks, deep learning

models such as the CNN with deeper and more sophisticated structures provide promising tools

for reliable representation and prediction of highway datasets. YOLO (You Only Look Once) v3

model for object detection in this study uses CNN.

2

RESEARCH OBJECTIVES

By building on MDOT SHA initial development of drilling data neural network models, this

project further optimized and updated the existing neural network models with newly available

data and developed and tested new machine learning models by continually updating, retraining,

and optimizing the machine learning structures and hyper-parameter values for the selected

highway datasets. A literature review of machine learning algorithms for such highway data

modeling and prediction has also been conducted. Survey and identifying areas of opportunity

for machine learning in MDOT SHA has also been conducted, which included the following

datasets: drilling data, pavement FWD data, project schedule estimation using reinforcement

learning, Maryland precipitation data and modeling, ROW (right-of-way) images processing and

object detection for desired highway objects (e.g., traffic barrier end treatments in guardrail;

insect blocking detection in ROW images), pavement construction history (pavement thickness

data), and geologic datasets. These machine learning models can be used and updated with new

data to assist with the decision-making process of MDOT SHA in project planning and

construction.

RESEARCH APPROACH

To achieve the objectives of this study, the following tasks were undertaken. The general outline

for the machine learning methods adopted in this research is shown in Figure 1. This research

considered the following three types of machine learning algorithms: supervised learning,

machine vision, and reinforcement learning. A brief description of each machine learning

method is given below and more details on why they were chosen can be found in the

corresponding chapters of this report.

Task 1. Project Management

The research team coordinated closely with MDOT SHA throughout the project in order to

establish machine learning models for the selected highway datasets including drilling data,

pavement data (FWD), scheduling estimates using reinforcement learning, QA/QC sample

location identification, Maryland precipitation data and modeling, ROW image processing and

3

object detection for desired highway objects (e.g., traffic barrier end treatments in guardrail),

pavement construction history (thickness) datasets (Task 2) and validation and test of the newly

trained machine learning models (Task 3). Quarterly progress reports were prepared and

submitted. Participation in project meetings coordinated by MDOT SHA with OMT staffs were

attended regularly for machine learning model application needs and data requirements.

Task 2: Neural network model development for highway tabular datasets

The research team (here force defined as UMD and MDOT team members) trained tabular data

neural network models for selected highway datasets of interest to MDOT SHA including

drilling data, pavement datasets (pavement FWD data, construction history/pavement thickness

data), and used the trained neural network models for target variable prediction. The research

team also did literature review to ensure the tabular data neural network model is current and has

been updated for the drilling data based on parametric study of hyper-parameter values.

Task 3: QA/QC processing ROW image data and object detection using YOLO v3 models

The research team reviewed example ROW images and has developed deep learning based

object detection models for detecting the traffic barrier end treatments and insect blocking in

ROW images using transfer learning and custom training data creation. Data preparation work

including quality assurance (QA) and quality control (QC) on ROW image data, bounding box

creation and labeling, and converting image data into a format suitable for YOLO v3 model use

has been conducted. The research team also did literature review of recent publications in this

field to ensure the adopted object detection model has the state of art performance.

The research team also developed processes to automate the QA/QC of ROW images. The

research developed processes to automate the detection of blurry photos, over and under

exposure, lost signal, image corruption, and insects blocking the camera lenses. The research

team have tested this QA/QC method with the ROW images collected from one county in

Maryland.

4

Task 4: Review & development of reinforcement learning model for scheduling estimation

The research team developed and tested a simple reinforcement learning model for drilling

project schedule estimation with 212 historical records in the Keras library environment. Q-

learning algorithm was adopted to build the reinforcement learning model for project duration

estimation. The research team also did literature review on reinforcement learning for project

schedule estimation.

Task 5: Developing Random Forest model for Maryland precipitation data

The research team trained random forest model for groundwater depth tabular datasets with

precipitation data included as feature variable and used the trained models to predict

groundwater depth at a given location. Tuning the Random Forest model for optimal hyper-

parameter values was conducted. Comparison of the predicted results from Fast.ai neural

network model and Random Forest model was also made by calculating the corresponding

confusion matrices in this study.

Task 6: Final Report

The research team developed this final report that includes all deliverables and analyses as
described in Tasks 2 to 5.

5

Figure 1. General outline for machine learning methods adopted in this research

6

CHAPTER 2. NEURAL NETWORK MODEL DEVELOPMENT FOR HIGHWAY
TABULAR DATASETS

The objective of this task was to train neural network models for selected highway tabular

datasets of interest to MDOT SHA including drilling data, pavement datasets (pavement FWD

data, pavement core thickness data), and then use the validated neural network models for

dependable variable prediction. Data preparation including extracting relevant data entries from

existing datasets, removing null data, filling missing values, discarding redundant data samples,

normalization and converting data into acceptable format by the Fast.ai neural network models

have been conducted.

In this study, the research team reviewed drilling (SPT) data based neural network model

training and predictions and investigated optimization approach to the drilling data models. The

research team also did literature review to ensure the tabular data neural network model is

current and has been updated for the newly available drilling data.

Figure 2. Architecture of feedforward neural network model for tabular data

The architecture of the adopted feedforward neural network model is shown in Figure 2. A

typical hidden layer with ReLU (rectified linear unit) activation function, batch normalization,

and dropout is the state of art for feedforward neural network model. Batch normalization

proposed by Ioffe and Szegedy (2015) normalizes the output of a previous activation layer by

subtracting the batch mean and dividing by the batch standard deviation. This ensures that the

gradients are more predictive and thus allows for use of larger range of learning rates and faster

network convergence (Santurkar et al. 2018). Therefore, Fast.ai-adopted neural network model is

already the state of art model for tabular data.

Categorical
Features

Embedding Dropout

Batch
Normalization

Continuous
Features

Linear
ReLu

Batch
Norm Dropout

Hidden Layer 1

…

Linear
ReLu

Batch
Norm Dropout

Hidden Layer N
Output

Input feature variables

7

Figure 3. Output and feature variables of the neural network model training for Grainsize data

In training the neural network model, it was optimized through an iteration process termed back-

propagation. The prediction accuracy derives from the neural network models trained with large

number of data samples that best represents the inherent complex relationship in the selected

highway datasets. In this study, deep learning model is treated as a classification model and the

CASE 0 baseline model cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION']
epoch train_loss valid_loss accuracy time

38 0.855892 0.86882 0.627386 0:35 layers=[400,800,800,800,400]

CASE 1 cont_names = ['NORTHING', 'EASTING','DEPTH']
epoch train_loss valid_loss accuracy time

39 0.866986 0.900002 0.611107 0:29 layers=[400,800,800,800,400]

CASE 2 Elevation removed from cont_var cont_names = ['NORTHING', 'EASTING','DEPTH']
epoch train_loss valid_loss accuracy time

39 0.924965 0.928657 0.597856 0:29 layers=[400,800,800,800,400]

CASE 3 Depth and Elevation removed from cont_cont_names = ['NORTHING', 'EASTING']
epoch train_loss valid_loss accuracy time

39 0.976248 0.962917 0.570144 0:29 layers=[400,800,800,800,400]

CASE 4 Depth and Elevation removed from cont_cont_names = ['NORTHING', 'EASTING']
epoch train_loss valid_loss accuracy time

39 0.848588 0.866266 0.622486 0:31 layers=[1000,800,800,800,800,400]

CASE 5 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

30 0.800042 0.761883 0.675477 0:34 layers=[1000,800,800,800,800,400]

CASE 6 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.849817 0.817577 0.638399 0:43 layers=[1000,800,800,800,800,400,400,400,400]

CASE 7 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.850484 0.84912 0.626285 0:53 layers=[1000,800,800,800,800,400,400,400,400,400,400]

CASE 8 emb_drop=0.25 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.857197 0.88166 0.602056 0:53 layers=[1000,800,800,800,800,400,400,400,400,400,400]

CASE 9 emb_drop=0.15 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.858941 4.99E+12 0.621512 1:02 13 layers=[400,800,800,800,800,800,800,800,400,400,400,400,400]

CASE 10 emb_drop=0.3 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.854808 0.832251 0.642805 0:48 10 layers=[400,800,800,800,800,800,400,400,400,200]

CASE 11 emb_drop=0.3 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.84435 0.854231 0.645742 0:39 8 layers=[400,800,800,800,400,400,400,200]

CASE 12 emb_drop=0.3 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.861466 0.819177 0.651615 0:36 7 layers=[400,800,800,800,400,400,200]

CASE 13 emb_drop=0.3 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.831036 0.831059 0.642438 0:33 6 layers=[400,800,800,800,400,400]

CASE 14 emb_drop=0.4 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.84558 0.832735 0.639501 0:36 7 layers=[400,800,800,800,800,400,400]

CASE 15 emb_drop=0.5 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEVATION'] cat_names = ['GEOL_NAME']
epoch train_loss valid_loss accuracy time

9 0.856387 0.831644 0.640235 0:36 7 layers=[400,800,800,800,800,400,400]

8

training target is to classify the data samples into corresponding output values (or buckets with a

range of values or bins) of highway datasets based on the given input. The output (e.g.,

engineering characteristics of geomaterials or pavement) of the machine learning model are thus

discrete classes. This can be tackled as a classification problem with each class representing one

possible value (or range) for the output of interest. Forecasting from the well-trained neural

network model for a given data sample (x) is made by choosing the class with the highest

probability. The training of the neural network model is to search for the optimal model

parameters that has the least cost function value. This is achieved through an iteration process

called gradient descent and its extensions. One extension of the gradient descent for enhanced

training performance is the stochastic gradient descent (SGD) with momentum. The term of

stochastic means the calculation of the cost function, is based on a randomly selected sub-dataset

X rather than the entire training set. The sub-dataset X is called mini-batch, and the number of

individual data samples in X is called the mini-batch size. In this project, the influencing factors

(feature variables) for the selected highway datasets were investigated. Data cleansing procedure

was also performed to discard redundant data points as well as removing bad data for each

feature table.

Figure 3 shows the training outputs from a parametric study of the neural network models for the

Grainsize data. Outputs include validation accuracy, train loss, validation loss, and training time.

In the parametric study, different combination of feature variables including site location

(northing, easting) information, depth, elevation, and geologic name, were considered.

Dependent variable is the grainsize bucket. Different number of neural network layers were also

tested. 90% of this dataset was randomly allocated for training and the remaining 10% data was

used for validation. The validation accuracy level from this parametric study varied from 0.602

to 0.675, as shown in Figure 3.

9

Figure 4. Comparing the real SPT N bucketed data compared to the model derived SPT N
buckets.

Figure 5. Output and feature variables of the neural network model trained for SPT N data

Figure 5 shows the training outputs from a parametric study of the neural network models for the

SPT N data in the Fast.ai environment (Fast.ai 2020). Outputs include validation accuracy, train

loss, validation loss, and training time. In the parametric study, different combination of feature

CASE 0 baseline model cont_names = ['NORTHING', 'EASTING','DEPTH','ELEV cat_names = ['GRAIN_SIZE',]
epoch train_loss valid_loss accuracy time Dep_var = 'SPT_N_Bucket'

39 1.872451 19.25283 0.335758 0:05 layers=[1000,1000,1000,1000]

CASE 1 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEV cat_names = ['GRAIN_SIZE',]
epoch train_loss valid_loss accuracy time Dep_var = 'SPT_N_Bucket'

39 1.841673 1.863765 0.372727 0:04 layers=[1000,1000,1000,1000,500,500]

CASE 2 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEV cat_names = ['GRAIN_SIZE',]
epoch train_loss valid_loss accuracy time Dep_var = 'SPT_N_Bucket'

39 1.860903 1.93758 0.318318 0:04 layers=[1000,1000,1000,1000,500,500]

CASE 3 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEV cat_names = ['GRAIN_SIZE',]
epoch train_loss valid_loss accuracy time Dep_var = 'SPT_N_Bucket'

39 1.839483 2.045309 0.294294 0:04 layers=[1000,1000,1000,1000]

CASE 4 cont_names = ['NORTHING', 'EASTING','DEPTH','ELEV cat_names = ['',]
epoch train_loss valid_loss accuracy time Dep_var = 'SPT_N_Bucket'

38 1.887951 1.948391 0.33033 0:03 layers=[1000,1000,1000,1000]

10

variables including site location (northing, easting) information, depth, elevation, and grain size,

were considered. Dependent variable is the SPT N bucket. Different number of neural network

layers were also tested. 90% of this dataset was randomly allocated for training and the

remaining 10% data was used for validation. The validation accuracy level from this parametric

study varied from 0.294 to 0.373, as shown in Figure 5. Figure 4 above shows a comparison of

the real value and neural network model derived value of SPT N bucketed data by visualizing the

data points in the Northing-Easting map of Maryland.

Figure 6. Output and feature variables of the neural network model trained for SWM Infiltration
Pass/Fail data

Figure 6 shows the training outputs from a parametric study of the neural network models for the

SWM infiltration data. Outputs include validation accuracy, train loss, validation loss, and

training time. Four hidden layers were used. Dependent variable is the SWM infiltrates Pass or

Fail (two classes). 90% of this dataset was used for training and the remaining 10% data was

randomly allocated for validation. It is noted that this dataset has only 491 samples, fewer than

other datasets. The validation accuracy level from this parametric study varied from 0.571 to

0.729, as shown in Figure 6.

Figure 7 shows the training outputs from a parametric study of the neural network models for the

water depth data. Outputs include validation accuracy, train loss, validation loss, and training

time. In the parametric study, different combination of feature variables including site location

(northing, easting) information, elevation, and drilled month, were considered. Dependent

variable is the water depth bucket. Different number of neural network layers were also tested.

90% of this dataset was used for training and the remaining 10% data was randomly allocated for

CASE 0 original case cont_names = ['NORTHING', 'EASTING','ELEVATION',' cat_names = ['GRAIN_SIZE']
epoch train_loss valid_loss accuracy time

99 0.422456 0.809017 0.729167 0:00 layers=[400,400,400,400]

CASE 1 cont_names = ['NORTHING', 'EASTING','ELEVATION',' cat_names = ['GRAIN_SIZE']
epoch train_loss valid_loss accuracy time

39 0.467786 0.98322 0.591837 0:00 layers=[400,400,400,400]

99 0.653061

CASE 2 cont_names = ['NORTHING', 'EASTING','ELEVATION',' cat_names = ['GRAIN_SIZE']
epoch train_loss valid_loss accuracy time

39 0.471963 0.951258 0.571429 0:00 layers=[400,400,400,400],emb_drop=0.05

11

validation. The validation accuracy level from this parametric study varied from 0.367 to 0.481,

as shown in Figure 7.

Figure 7. Output and feature variables of the neural network model trained for Water depth data

Figure 8 shows the training outputs from a parametric study of the neural network models for the

refusal depth data. Outputs include validation accuracy, train loss, validation loss, and training

time. In the parametric study, a single combination of feature variables including site location

(northing, easting) information, elevation, were considered. Dependent variable is the refusal

depth bucket. Different number of neural network layers were also tested. 90% of this dataset

was randomly allocated for training and the remaining 10% data was used for validation. The

validation accuracy level from this parametric study varied from 0.645 to 0.729, as shown in

Figure 8.

CASE 0 original case cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = ['DRILLED_MONTH
epoch train_loss valid_loss accuracy time

39 0.470756 layers=[400,400,400,400]

CASE 1 cont_names = ['NORTHING', 'EASTING','ELEVATION',' cat_names = ['DRILLED_MONTH
epoch train_loss valid_loss accuracy time

39 1.115888 1.164823 0.478142 0:01 layers=[512,512,512,512]

CASE 2 cont_names = ['NORTHING', 'EASTING','ELEVATION',' cat_names = ['']
epoch train_loss valid_loss accuracy time

39 1.170994 1.209876 0.464481 0:01 layers=[512,512,512,512]

CASE 3 cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = []
epoch train_loss valid_loss accuracy time

39 1.191955 1.244588 0.43306 0:01 layers=[512,512,512,512]

CASE 4 cont_names = ['ELEVATION'] cat_names = []
epoch train_loss valid_loss accuracy time

39 1.291348 1.317958 0.368852 0:01 layers=[512,512,512,512]

CASE 5 cont_names = ['NORTHING', 'EASTING','ELEVATION',' cat_names = ['DRILLED_MONTH
epoch train_loss valid_loss accuracy time

39 1.108445 1.194398 0.480826 0:01 layers=[1000,1000,1000,1000]

12

Figure 8. Output and feature variables of the neural network model trained for Refusal depth data

The research team developed tabular regression model and performed training for hot mix

asphalt (HMA) and concrete thickness prediction and used these model predicted HMA and

concrete thickness values (not buckets like other classification models) for inclusion into the

FWD dataset. In training the pavement core thickness model, the following feature variables

CASE 0 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

39 0.708333 0:00 layers=[400,400,400,400], emb_drop=0.05

CASE 1 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

138 0.843884 0.851037 0.708333 0:00 layers=[400,400,400,400]

139 0.847207 0.873645 0.708333 0:00

CASE 2 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time emb_drop=0.05

39 0.697917 0:00 layers=[1000,1000,800,800,400], ps=[0.001, 0.001, 0.001, 0.01, 0.01],

CASE 3 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

39 0.729167 0:00 layers=[1000,1000,800,800,400], emb_drop=0.05

CASE 4 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

38 0.940849 0.829995 0.71875 0:00 layers=[800,800,400,400,400], emb_drop=0.05,

39 0.942974 0.883637 0.65625 0:00

CASE 5 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

38 1.002948 0.919234 0.645833 0:00 layers=[800,800,400,400], emb_drop=0.05,

39 0.998556 0.952336 0.666667 0:00

CASE 6 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

138 0.86904 0.908332 0.697917 0:00 layers=[800,800,400,400], emb_drop=0.05,

139 0.86878 0.911432 0.708333 0:00

CASE 7 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

138 0.829881 0.930285 0.697917 0:00 layers=[400,400,400,400], emb_drop=0.05,

139 0.832082 0.902326 0.666667 0:00

CASE 8 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

139 0.836391 0.908438 0.697917 0:00 layers=[1000,1000,800,800,400], emb_drop=0.05

CASE 9 dep_var = 'DEPTH_BUCKET' cont_names = ['NORTHING', 'EASTING','ELEVATION'] cat_names = [' ']
epoch train_loss valid_loss accuracy time

39 0.666667 0:00 layers=[400,400,400,400], emb_drop=0.25

13

were adopted: Categorical variables: 'ROUTE_NAME', 'COUNTY', 'COND_YEAR',

'LANE_NUMBER'; Continuous variables: 'X_COORDINATE’, 'Y_COORDINATE’;

Dependent variables (i.e., target variable to predict): ’CONCRETE_NET_THICKNESS’ or

'ASPHALT_NET_THICKNESS’. It is worth noting that for the initial pavement thickness

classification model, the following bucket sizes were used for HMA as ['0-2','2-4','4-6','6-8','8-

10','10-12','12-14', '14-16','16-18','18-20'] (unit: inch), while the bucket size for concrete

pavement thickness classification model is ['4-5','5-6','6-7','7-8','8-9','9-10'] (unit: inch). These

lists were created to cover the range of data and also keep the accuracy of predictions at a high

level. For the regression model, the dependent variable is a continuous variable and thus the

output value from the model prediction was round off to nearest 0.25 inches. The prediction

accuracy after 20 training epochs was 0.964 and 0.998 for HMA and Concrete pavement

thickness models respectively. This high accuracy value over 0.94 was because of the large data

size used for training and relatively simple relationship hidden in the pavement thickness data.

Figure 7 below demonstrate this accuracy by showing three samples of HMA pavement true

value and predicted value from trained neural network tabular regression model. Predicted

thickness values from these pre-trained regression model for HMA and concrete thickness were

intended to be used as Feature Variables in subsequent falling weight deflectometer (FWD) data

model training. The distribution is similar between pavement thickness file and FWD data file.

Figure 9. Comparison of HMA pavement true value and predicted value from trained neural
network tabular regression model

The following metrics were also used for evaluation of the regression model performance,

 RMSE: The Root Mean Squared Error is the standard deviation of the errors/residuals. It

tells us the ‘Goodness of Fit’ of a model. The lower the value of RMSE the better the

model.

14

 R2score: The R-Squared metric also called the coefficient of determination is used to

understand the variation in the dependent variable(y) and the independent variable(X).

The closer the value of R-Squared is to one, the better the model

Figure 10. RMSE and R2score values of HMA and Concrete pavement thickness regression
models

It is clear that the high accuracy observed above in the training outputs of HMA and Concrete

pavement thickness regression model are demonstrated in Figure 11 again for the high RMSE

and R2score values greater than 0.96. Therefore, it is concluded that the tabular data regression

neural network model can be used for HMA and Concrete thickness prediction and the model

provides fairly good predictions in comparison to real data. This can also be seen in Figure 11,

which shows a strong correlation between the predicted concrete pavement thickness values and

corresponding true values.

Figure 11. Scatter plot of Concrete Net Thickness prediction (horizontal axis is true value)

RMSE R2_SCORE

HMA 0.514 0.964

Concrete 0.059 0.997

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Pr
e
di
ct
e
d
Va
lu
e
 o
f
C
on
cr
e
te
 T
hi
ck
ne
ss

True Value of Concrete Thickness

15

The research team developed tabular data neural network regression model and training for FWD

data and also updated the prediction of tabular classification model training and prediction for

FWD data with predicted pavement thickness data included. For training the FWD prediction

regression model, the following variables were included: Categorical variables: ‘DIRECTION',

'ROUTE_NAME', 'TEST_SETUP’; Continuous variables: 'X_COORDINATE',

'Y_COORDINATE’, 'HMA_Pred', 'Concrete_Pred’; Dependent variables: D1-D8, D9 Basin, D9

Joint. From Figure 12 below, the FWD regression models showed RMSE values lower than 7

and had R2_score values falling within a range of 0.48 to 0.60. The model achieved a moderate

accuracy with regard to the RMSE and R2 score. This moderate accuracy can also be seen in

Figure 13, which shows some correlation between the predicted FWD D1 to D3 values and

corresponding true values.

Figure 12. RMSE and R2score values of FWD regression models

Figure 13. Scatter plot of predicted and true value of FWD data (only D1, D2 values shown)

RMSE R2_SCORE

D1 w/o pavement data 6.736 0.577

D1 6.520 0.608

D2 5.324 0.527

D3 4.070 0.502

D4 2.901 0.491

D5 2.221 0.472

D6 1.475 0.479

D7 1.111 0.486

D8 0.997 0.510

D9 Basin 3.100 0.675

D9 Joint 2.807 0.528

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Pr
ed
ic
te
d
 V
a
lu
e

True Value

(a) D1 model

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

P
re
di
ct
ed

 V
al
ue

True Value

(b) D2 model

16

FWD classification models were retrained after adding the predicted pavement thickness to

feature variable list. In the FWD classification model, the following variables were adopted:

Categorical variables: 'DIRECTION','ROUTE_NAME','TEST_SETUP’; Continuous variables:

'X_COORDINATE', 'Y_COORDINATE’, 'HMA_Pred',' Concrete_Pred’; Dependent variables:

D1, D2, D3 respectively. Two bucket sizes were considered: Group a) with refined bucket size:

evenly divided bucket in range [0-200] with small interval of 1; Group b) Original Bucket size.

Training accuracy results for these FWD classification models after 20 epochs are shown in

Figure 14.

Figure 14. Training accuracy of three FWD classification models after adding predicted
pavement thickness to the training data feature list

From these results, the following conclusions can be drawn: Shrinking the bucket size to ‘1’ is

not recommended as it causes significant drop in accuracy. Including the HMA thickness and

Pavement thickness as continuous feature variables did not appear to improve the accuracy of the

FWD classification model.

Accuracy

D1 0.181

D2 0.208

D3 0.230

Accuracy

D1 0.530

D2 0.568

D3 0.597

Accuracy

D1 0.528

D2 0.571

D3 0.595

Group a) Refined bucket (range [0‐200]
evenly divided with interval of 1)

Group b) Original Bucket size Group c) Original Bucket size w/o
Pavement Thickness Data

17

CHAPTER 3: QA/QC PROCESSING IMAGE DATA AND OBJECT DETECTION
USING YOLO V3 MODEL

In this study, the research team reviewed example ROW images and remote monitoring camera

data. The research team developed deep learning based object detection models for detecting the

traffic barrier end treatment and insect blocking in ROW images using transfer learning and

custom training data creation. The research team also did literature review of recent publications

in this field to ensure the adopted object detection model has the state of art performance.

Table 1. Comparison of object detection algorithms (adapted from Redmon and Farhadi 2018)

 backbone AP AP50

Two-stage methods

Faster R-CNN+++

Faster R-CNN w FPN

Faster R-CNN by G-RMI

Faster R-CNN w TDM

ResNet-101-C4

ResNet-101-FPN

Inception-ResNet-v2

Inception-ResNet-v2-TDM

34.9

36.2

34.7

36.8

55.7

59.1

55.5

57.7

One-stage methods

SSD513

DSSD513

RetinaNet

YOLOV3 608 x 608

ResNet-101-SSD

ResNet-101-DSSD

ResNeXt-101-FPN

Darknet-53

31.2

33.2

40.8

33.0

50.4

53.3

61.1

57.9

Note: AP = Average Precision. Details of AP can be found later in this chapter.

Object detection involves identifying the presence, location, and type of one or more specified

objects in a given picture or video images. It builds upon methods for object recognition, object

localization, and object classification. In recent years, deep learning techniques are achieving

state-of-the-art results for object detection, such as on standard benchmark datasets and in

computer vision competitions. The computer based statistical model created by deep learning

with convolutional neural networks can attain state-of-the-art accuracy, sometimes exceeding

human-level performance with proven outstanding in image classification, segmentation, and

object detection (Lawal 2020). Notable is the “You Only Look Once,” or YOLO, family of

Convolutional Neural Networks that achieve near state-of-the-art results with a single end-to-end

model that can perform object detection in real-time (Redmon and Farhadi 2018). YOLO v3

18

makes detection at three different scales and extracts features from those scales using a similar

concept to feature pyramid networks. Table 1 compares the accuracy of various object detection

models. In evaluating object detection algorithm, two main performance metrics were used:

accuracy and computing time. Based on the comparative study by Redmon and Farhadi (2018),

YOLOv3 is much better than SSD (single shot detector) variants and comparable to other state-

of-the-art models like RetinaNet in accuracy but very fast (inference time is shorter).

YOLO combines the region proposal network branch and classification stage into a single

network, leading to more concise architecture, state of the art performance in object detection

with high computation speed and better computational efficiency, making them the true sense of

real-time detectors (Redmon and Farhadi 2018). YOLO v3 is a masterpiece in the rising era of

artificial intelligence, and also an excellent example of the power of Convolution Neural

Network techniques. Deep learning based object detection algorithm is very useful in ensuring

the transportation safety. If implemented, not only the engineering and construction information

can be accurately estimated in the early phase of the project, but also defective materials and

components in existing highway infrastructures can be rapidly identified and replaced/repaired

by using such machine learning models.

Transfer learning refers to the situation where what has been learned in one setting (base dataset)

is exploited to improve the generalization in another setting (target dataset). When the target

dataset is significantly smaller than the base dataset, transfer learning enables training a large

target network without overfitting; recent studies that have taken advantage of this fact obtained

state-of-the-art results from transfer learning (Liu and Zhang 2019, 2020). In YOLO v3,

DarkNet-53 is used as a backbone feature extractor. DarkNet-53 has less billion floating point

operations than the ResNet-152, but achieves two times faster with the same classification

accuracy. Thus, YOLOv3 shows significant improvement for small objects detection and

performs very well with speed involvement (Lawal 2021). The use of transfer learning to

facilitate the training of deep learning based object detection models was adopted in this study

because the number of available data samples usually falls below a threshold value (e.g., this

minimum number of data records required for well-trained deep learning models usually on the

order of millions of images for good prediction accuracy). Apparently, millions of images for a

19

specific image classification or object detection application is not presently available in most

civil engineering datasets, therefore transfer learning can significantly reduce the required data

size for training deep learning models with acceptable prediction accuracy) only requires several

hundreds of image data samples to achieve a reasonably good prediction accuracy. Transfer

learning is also appealing to the proposed project because the sophisticated design of the

architecture of those best-performing deep learning based object detection models validated by

other professionals can be taken advantage of.

Figure 15. Architecture of YOLO v3 spp (spatial pyramid pooling) model

In this study, the UMD team used YOLO v3 model to detect a number objects of potential

interests to MDOT SHA, including traffic barrier end treatment end treatment in highway

guardrails and insects blocking the ROW vehicle cameras. After comparing several open source

models, the YOLO v3 spp open-source model from github (Ultralytics, 2020,

https://github.com/ultralytics/YOLOv3) was found to have more features and higher accuracy

based on testing results and thus adopted for this study. Figure 15 shows the architecture of

YOLO v3 spp model. As a demonstration of the general procedure for object detection, ball

detection was conducted and first presented here. It is worth noting that this ball detection can be

potentially used for monitoring rock slope movement in field by attaching the color ball to the

desired location on the rock slope using metal studs and polyurethane glue. First, raw images

were prepared for training images by adding bounding boxes and labels to the identified objects

in the training images, as shown for the two orange balls in Figure 16. To train the YOLO v3

model for object detection, a proper epoch number needs to be determined first before training.

Several factors contribute to the proper number of training epochs, including the amount of

training images, number of object classes for detection, and etc. It was found in this study from

trial tests that good training weights was reached after training for about 150 epochs, therefore

the training epoch value was set as 200 here.

Input image
Convolution NN
Down-sampling

Block

Spatial
Pyramid

Pooling Block

Object
Detection Block

20

Figure 16. Prepared training images from remote cameras with bounding boxes around objects to
be identified

Figure 17. Sample output image with ball objects identified by YOLO v3 model

21

The output confidence value above each identified box can be used to assess the confidence

probability of the identified object using the trained model. In order to not miss any real

detections, the recommended confidence threshold for object detection is between 0.1 to 0.15. In

this study, confidence threshold value was set as 0.1. Example images of detected orange balls

with boxes and corresponding confidence value are shown in Figures 17 and 18. It is seen that

photo quality (e.g., with exposure) had some negative effect on object detection performance.

Figure 18. Sample output image with ball objects identified by YOLO v3 model in an
overexposed photo from remote cameras

To study the feasibility of using machine learning based object detection method to capture

objects of interest in ROW images, the YOLO v3 object detection model was first trained with

huge amount of ROW image data collected by MDOT SHA. Figure 19 shows a typical ROW

image with objects of interest (e.g., trucks, cars, traffic lights) being successfully identified by a

trained YOLO v3 object detection model. To further test the performance of YOLO v3 algorithm

in quickly identifying other objects of interest such as traffic barrier end treatment in guardrail,

the research team trained YOLO v3 models with a goal of rapidly screening ROW image

datasets in MDOT SHA archive. Preliminary results have shown the deep learning based YOLO

22

v3 spp algorithm was very effective and achieved over 90% accuracy in identifying the traffic

barrier end treatments in the scanned images.

Figure 19. Objects of interest identified in ROW images

To train the YOLO v3 model for detecting the traffic barrier end treatment in highway

guardrails, a selected number of ROW images were first prepared for training images by adding

bounding boxes and labels to the identified objects in the image, as shown in Figure 20. The

number of training images was determined to be around fifty on a trial and error base by

considering the computing time and diversity of image background and object scales. In the

current model, 47 training images and 5 validation images were included for the training model.

Batch size was set to be 16. The training epoch value was set as 300 here. In order to not miss

any real detections, the confidence threshold value was set as 0.1 in this study. Training of the

YOLO v3 spp model was completed in 4.3 hours using a single Nvidia Titan X GPU card.

Important output parameters from training the YOLO v3 spp (Ultralytics 2020) model are shown

in Figure x, which track the right training path, including GIOU, Objectness score and

Classification score for the training set and validation set. In this study, since only one class (i.e.,

traffic barrier end treatment) was defined in the training image set, the classification score would

remain zero. Other controlling output parameters are ‘Precision’, ‘Recall’, ‘m-AP@0.5’ and ‘F1’

23

score. The precision of a class define how trustable is the result when the model answer that a

point belongs to that class. The recall of a class expresses how well the model can detect that

class. The F1 score of a class is given by the harmonic mean of precision and recall

(2×precision×recall / (precision + recall)), it combines precision and recall of a class in one

metric.

Figure 20. Prepared training images with bounding boxes around objects to be identified

To quantitatively evaluate the deep learning model performance in forecasting, several

performance metrics were defined and used in this study. The AP is computed based on the

Precision-Recall value. The general definition for the Average Precision (AP) is finding the area

under the precision-recall curve. The IOU threshold is set as 0.5. For the single class training, the

mean average precision (m-AP) is the same as average precision (AP) with its best possible

value equal to one. GIOU reflects the error overlapped area between trained bounding box and

real bounding box. Objectness score represents the probability that an object is contained inside a

bounding box. Recall of a class expresses how well the model can detect that class and best

possible value is one. The F1 score of a class is given by the harmonic mean of precision and

recall (2×precision×recall / (precision + recall)), it combines precision and recall of a class in one

metric and its best possible value is one.

24

Figure 21. Training outputs from YOLO v3 spp model for traffic barrier end treatment detection

Table 2. Performance of YOLO v3 spp model for traffic barrier end treatment detection in ROW

images

Detection Rate Error Rate Accuracy Rate

Garett County I 25/2500=1% (25-6+6)/2500=1% 1-1%=99.00%

Garett County II 9/2500=0.36% (9-2)/2500=0.28% 1-0.28%=99.72%

Garett County III 11/2500=0.44% (11-1)/2500=0.4% 1-0.4%=99.60%

Wicomico I 6/2500=0.24% (6-0)/2500=0.24% 1-0.24%=99.76%

Wicomico II 7/2500=0.28% (7-5+4)/2500=0.24% 1-0.24%=99.76%

Wicomico III 5/2500=0.2% (5-0)/2500=0.2% 1-0.2%=99.80%

For testing the trained deep learning models, separate dataset other than the training dataset need

to be used. The trained YOLO v3 model took approximately 40 minutes to finish the detection

task by scanning one image data subset (each containing 2,500 images), which translates to about

0.96 seconds per image. The performance of the YOLO v3 spp model for detecting the traffic

barrier end treatments in ROW images collected in two Maryland counties (Garrett County and

Wicomico County) is summarized in Table 2. It is clear that a high accuracy was achieved by the

YOLO v3 spp model in detecting traffic barrier end treatments. Example images of detected

25

traffic barrier end treatments (End T. in each image) with boxes and corresponding confidence

value are shown in Figures 22 to 32. These sample images were selected for different

background and scale of traffic barrier end treatments. It is seen that scale of the traffic barrier

end treatment (i.e., close or far view) has some effect on the detection confidence values.

Figure 22. Sample output image with traffic barrier end treatment identified by YOLO v3 model

Figure 23. Sample output image with traffic barrier end treatment identified by YOLO v3 model

26

Figure 24. Sample output image with traffic barrier end treatment object identified by YOLO v3
model

Figure 25. Sample output image with traffic barrier end treatment object identified by YOLO v3
model with tall grass in the background and dashed yellow line marking on the road

27

Figure 26. Sample output image with traffic barrier end treatment object identified by YOLO v3
model with woods background and with close-up view of traffic barrier end treatment

Figure 27. Sample output image with traffic barrier end treatment object identified by YOLO v3
model with medium-scaled traffic barrier end treatment in the picture

28

Figure 28. Sample output image with traffic barrier end treatment object identified by YOLO v3
model with small-scaled traffic barrier end treatment in the picture

Figure 29. Sample output image with traffic barrier end treatment object identified by YOLO v3
model with traffic barrier end treatment on the left side of the roadway

29

Figure 30. Sample output image with traffic barrier end treatment object identified by YOLO v3
model with partial view of traffic barrier end treatment on the left

Figure 31. Sample output image with traffic barrier end treatment object identified by YOLO v3
model with inclined traffic barrier end treatment and shrubs in the background

30

Figure 32. Sample output image with traffic barrier end treatment identified by YOLO v3 model
with a bridge in the background

Currently MDOT SHA does QA/QC on all of the ROW imagery, and part of this QA/QC work

involves identifying photos that are out of focus, covered lense (bugs trash), and etc. The

research team was tasked to optimize the existing QA/QC tool to rapidly scan all the ROW

imagery and find images with different types of defects including blurriness, underexposure,

overexposure, no signal, discolored, and signal issues. A python script has been developed that

can run any set of images for a particular year and county in Maryland. As shown in Figure 33,

this QA/QC tool builds a csv file with the flagged errors and the shortcut to that photo, and a

copy of the photo is then saved to another folder. The flags are found via algorithmic methods

(e.g., variance of Laplacian for the blurriness) so processed images can be used for object

detection such as insect blocking detection. The research team have tested the basic QA/QC

method by runing this through the ROW images collected from one county in Maryland and it

was found this method can effectively find potential issues. Optimization of the blurry and no

signal thresholds was also done to catch blurry photos and minimize false positives.

31

Figure 33. Schematics of QA/QC tasks for ROW images

Lastly, the research team also did YOLO v3 spp object detection for insect blocking detection in

ROW images as part of the task on QA/QC of ROW images. To train the YOLO v3 model for

detecting the insect blocking, a selected number of ROW images were first prepared for training

images by adding bounding boxes and labels to the identified objects in the image, as shown in

Figure 34. For single batch image set, insects were almost same location in image and pixel sizes

were fixed are each insect. The number of training images was determined to be around seventy

on a trial-and-error base by considering the computing time and diversity of image background

and object scales. In selecting these training images, images with insects mixed into diverse

background types (see Figure x for three types of background) were preferred for model

robustness and improved detection accuracy. Additional types of insects (shapes, sizes, location

in image) would be helpful to make object detection robust for insects unseen here. A total of 70

training images were selected, 45 from Group One (first batch of images, sample shown in

Figure 31(a)), and 25 from group two (2nd batch of images, sample shown in Figure 31(b)) were

included for the training model.

32

(a)

(b)

(c)

Figure 34. Three prepared training images with bounding boxes around insect objects to be
identified: (a) cloud background; (b) roadway and wall background; (c) truck background

33

Batch size was set to be 16. The training epoch value was set as 200 here. In order to not miss

any real detections, the confidence threshold value was set as 0.1 in this study. Training of the

YOLO v3 spp model was completed in 6.5 hours using a single Nvidia Titan X GPU card.

Important output parameters from training the YOLO v3 spp model are shown in Figure 35,

which track the right training path, including GIOU, Objectness score and Classification score

for the training set and validation set.

Figure 35. Training outputs from YOLO v3 spp model for insect blocking detection

The remaining 3,199 pictures (no training image included) were used for test, and it took 68.38

seconds total to complete the object detection scanning tasks for all these images (thus each

image took about 0.16 seconds for insect detection using the trained YOLO v3 spp model for

insect detection). The model could not detect insects against tree background because tree

background was not included in training set. Example images of detected insect blocking with

boxes and corresponding confidence value are shown in Figures 36 to 40.

34

Figure 36. Sample output image with insect objects identified by YOLO v3 model

Figure 37. Sample output image with 3 insect objects identified by YOLO v3 model

35

Figure 38. Sample output image with 1 insect object identified by YOLO v3 model

Figure 39. Sample output image with 1 insect object identified by YOLO v3 model

36

Figure 40. Sample output image with 2 insect objects identified by YOLO v3 model

37

CHAPTER 4: REVIEW & DEVELOPMENT OF REINFORCEMENT LEARNING
MODEL FOR SCHEDULING ESTIMATION

In this study, the research team developed and tested reinforcement learning models for drilling

project schedule estimation with 212 historical records in Keras library environment. The

research team also did literature review on reinforcement learning for project schedule

estimation.

Reinforcement Learning (RL) is a machine learning algorithm that trains an agent to learn in an

interactive environment using feedback from its own actions and experiences (Sutton and Barto

2018). The RL framework contains a decision maker (agent) that takes actions and interact with

an environment to maximum the total rewards. The agent explores policies and chooses actions

until an optimal policy is reached, and rewards are returned to the agent for each adopted action,

as shown in Figure 41. Environment denotes the physical world in which the agent operates;

Policy here refers to instructions to agent on how to take actions based on current state; Reward

provides the feedback from the environment after taking a specific action.

Figure 41. The agent-environment interaction in reinforcement learning

Resource management problems are of special interest in many real-world applications such as

equipment allocation and project scheduling. However, designing algorithms to allocate limited

resources to different tasks is challenging and often requires human-generated heuristics. RL

approaches are especially well-suited to resource management systems (Mao et al. 2016). First,

decisions made by these systems are often highly repetitive, thus generating an abundance of

training data for RL algorithms. Second, RL can model complex systems and decision-making

policies as deep neural networks analogous to the models used for game-playing agents. Mao et

Agent

Environment

Action aiState si Reward rt

At each project i, the agent observers
the current state from the
environment and takes an action

38

al. (2016) showed how to use RL to automatically learn to allocate and schedule computer

resources to waiting jobs, with the objective to minimize the average job slowdown.

RL problems can usually be modeled as a Markov Decision Process, which consists of a set of

finite environment states S, a set of possible actions A(s) in each state, a real valued reward

function R(s) and a transition model P(s’, s|a). However, real world environments are more likely

to lack any prior knowledge of environment dynamics. Model-free RL methods come handy in

such cases (Bhatt 2018). Q-learning is a commonly used model-free approach which can be used

for building the environment by training an agent. In Q-learning, a Q-table provides guidance to

the best action at each state by looking at updated Q values which denotes the maximum

expected future reward value for performing action ai in state si. The Q-function uses the

Bellman equation to optimize the Q-value in making reward and action decisions. RL is

theoretically able to alleviate the curse of dimensionality related to the state space, either under

model-free approaches that do not utilize prior offline environment information on transition

dynamics, or model-based approaches that also try to learn the underlying transition model of the

environment.

In this study, Q-learning algorithm was adopted to build an RL model for project duration

estimation. Possible input parameters to the RL model included: Project Location X, Y

(potentially related to the distance of the drilling site from OMT office), number of SPT Borings,

Linear Feet (LF) of SPT boring, number of Auger Borings (ABLF of AB). Example is [15, 8,

3.6, 3, 2]. Estimated Delivery Date of Each project checkpoint involves IE Approval, Field

testing start date, Field testing end date, project delivery. The input: A vector of five values.

distance from OMT, # of SPT Borings, Linear Feet LF of SPT, # of Auger Borings, LF of

Auger); The Q table from the agent based on the input and action state selected using existing

data (but the input space is limited to a few hundred historical data records available to the

research team.

39

Figure 42. Raw drilling project duration data

In this study, the following RL policy definition was adopted to generate the Q table and guide

action decisions.

1. First read in all 212 available samples and sort them in ascending order of a predefined

resource demand metrics that ideally would be strongly correlated to the target of interest

(i.e., drilling project duration or completion time in days). In this pilot study, sum of AB

LF and SPT LF was used, however, other more sophisticated sorting metrics were also

tested such as random forest of predicted drilling project completion days. After sorting,

the first one is the sample with least resource demand value, and the last sample is the

one with largest demand value. This sorted data bunch was used later in the environment.

For simplicity, data sample format uses this format of [AB LF, SPT LF], however, other

features such as drilling site distance from OMT office could also be used (e.g., AB

bucket, SPT bucket, distance). A request (new) input sample was fed into the model to

decide which sample is the closest with regard to resource demand, and then the duration

of the closest sample (from 212 total samples) was used as estimate of the duration for

the request input.

40

2. Reward definition

a. reward = 1/[abs(input demand - current state demand)+0.1]-0.1; this reward

enables that after each simulation, it gradually moves towards the true value (or

closet sample) termed destination. The reward for each action is defined as

(demand can be any custom-defined combo features related to the target variable):

b. Q-table value is based on summation of rewards accumulated in the search

process for each cell.

3. Action Policy

a. For stage 1 (exploration stage), the action is determined by the difference between

input demand and current state demand, moving the right if positive, left if

negative.

b. For stage 2 (knowledge utilization stage), the action is determined by comparing

Q value of the state right and left of the current state.

4. Exit policy

a. For stage 1, if the product of current action difference and previous action

difference is negative, exit the loop.

b. For stage 2, if the Q-value of the current state is higher than either of the adjacent

state, exit the loop.

Figure 43. Illustration of sorted data samples in RL

Flowchart of reinforcement learning model realizing the above policy defined for project
schedule estimation is shown in Figure 44.

213 cells (each cell is the sorted sample data)

reward definition will guarantee it will move from starting point towards the destination in one way direction

current state (first one is starting point) destination

41

Figure 44. Flowchart of reinforcement learning model for project schedule estimation

As shown in Figure 43, this model was to generate a Q-table by finding the closest sample of an

input among all available historical records. The historical record has been sorted in ascending

order based on corresponding resource demand value. Resource demand is defined as the

combination of features. A challenging task here is to find a combo feature that can best correlate

the input feature variables with the project duration in days. In this model, it was defined as the

summation of Auger LF and SPT LF. A more complex function such as advanced machine

learning models can also be defined if that proves to be more closely match the resource demand

with project duration days. For example, Figure 45 shows two definitions for this resource

demand metric regressed from real data using the least mean squares technique in comparison

with actual project duration data (in red dots). In the figure, AB LF is the x axis, SPT LF is the y

axis, and duration (days) of job completion time as z axis. The real data samples were fitted by

linear plane and quadratic surface using least mean squares regression. Quadratic function has

this form: z=a+bx+cy+dxy+ex^2+fy^2. However, these two resource demand functions seem to

be dominated by outliers and the residual error is fairly large.

42

(a) (b)

Figure 45. Comparison of resource demand metrics (gray plane) vs. actual project duration data
points (z axis or vertical axis = project duration; x axis, y axis = AB LF and SPT LF):

(a) Regressed Quadratic plane; (b) Regressed linear plane

Figure 46. Sample Q-table values after convergence of RL simulation

.

43

Each simulation loop in the RL contains one realization to populate the Q-table. In Stage 1,

current state is generated by random drawing; while initially the starting point is randomly

selected, as simulation accumulates and Q-table is populated by the Q-learning, maximum Q

number in the 212 cell is selected first as the starting point. A sample converged Q table

generated by running the RL script (based on input demand=7) is shown in Figure 46 above.

Since the input demand is closest to the 4th row of the record, the Q value in the 4th row

generated by RL is much larger than other rows in the table.

Random Forest as a machine learning technique has also been applied to investigate if Random

Forest predicted value can be potentially used for the resource demand metric that better map the

features to duration days. In this Random Forest model, AB LF, SPT LF were selected as feature

variables and duration days are dependent variable to predict. 80% records of the total 212

samples were used for training, while the remaining 20% records were used for validation. The

results and plot of predicted value from the Random Forest model vs actual data (true project

duration in days) are plotted in Figure 47 below. However, the Random forest model does not

seem to be able to capture the complex relationship between these variables, mostly due to

insufficient feature variables and sparse data size.

Figure 47. Comparison of predicted value from the Random Forest model (y axis) vs actual data
of true project duration in days (x axis)

44

CHAPTER 5: DEVELOPING RANDOM FOREST MODEL FOR MARYLAND
GROUND WATER DATA

The objective was to train random forest models for selected highway tabular datasets of interest

to MDOT SHA including groundwater data and drilling project schedule data, and then use the

trained random forest models for dependable variable prediction. Data preparation including

extracting relevant data entries from existing datasets, removing null data, filling missing values,

normalization and converting data into acceptable format by the random forest models have been

conducted. In this study, the research team reviewed groundwater depth data training and

predictions and Maryland precipitation data extracted from NOAA data repository.

Figure 48. Schematics of Random Forest classifier

Random Forest Classifier is an ensemble tree-based learning algorithm that consists of many

decision trees from randomly selected subset of training set, as shown in Figure 48. It aggregates

the votes from an uncorrelated forest of decision trees to predict the class. In Breiman’s approach

(Breiman, 2001), each tree is formed by first selecting at random, at each node, a small group of

features to split on and, secondly, by calculating the best split based on these features in the

training dataset. The tree is grown using CART methodology to maximum size, without pruning.

This subspace randomization scheme is blended with bagging to resample, with replacement, the

training data set each time a new individual tree is grown (Biau, 2010). Random forest algorithm

usually outperforms neural networks in small datasets (e.g., < 1K samples) according to literature

search results. Random forest method was tested on two drilling dataset with relatively small size

Tree #1 Tree #2 Tree #N

CLASS A CLASS B CLASS A

Majority Voting

Final Class

Dataset

Feature #2Feature #1 Feature #N

45

and low prediction accuracy using the fast.ai tabular model: groundwater depth data and SPTN

data.

To utilize the precipitation data as a feature input to the Random Forest model training, the

research team first developed scripts to extract NOAA precipitation data (daily, weekly,

monthly) in a specified time window. The source of the NOAA data is from the CPC Unified

Precipitation Project underway at NOAA Climate Prediction Center (CPC). The land mask for

the CPC dataset is such that actual data resides between 20N to 49.5N and 233.75E to 292.75,

which basically covers continental US data. The daily precipitation data values are accumulated

from 12z of the day before to 12z of the present day. Precipitation data is based on the grids of

geographic 0.25x0.25-degree cell. Drilling site GPS coordinates were converted and assigned to

the corresponding data by Nearest neighbor algorithm. Each ground water point was assigned to

a geographic 0.25x0.25degree cell for both daily accumulated precipitation and monthly mean

precipitation.

Figure 49. Groundwater depth data samples

The groundwater depth data from drilling datasets has a total of 7,732 data samples and 10%

allotted to validation dataset. Four feature variables were included: 'NORTHING', 'EASTING',

46

'ELEVATION', 'DRILLED_MONTH’. Three features from Maryland precipitation dataset

(described later) were also included in the training dataset for Random Forest model: ‘State mean

Rainfall’: average monthly MD precipitation over a 20 year period (1981-2010); ‘Station’:

weather station name; ‘Station Rainfall’ (SR): average precipitation at specific station over a 20-

year period (from 1981 to 2010). Normalization was applied to variables in the data pre-

processing step. It is seen in Table 3 that random Forest performed better.

To see if further improvement of learning results can be achieved or not, tuning the Random

Forest model by optimizing hyperparameter values was investigated. Sklearn provides useful

tools for hyperparameter tuning: ‘RandomizedSearchCV’ and ‘GridSearchCV’. Documentation

for sklearn RandomForest function suggests considering two most important hyperparameters:

 number of trees in the forest (n_estimators)

 number of features considered for splitting at each leaf node (max_features).

Tuning the default Random Forest model was conducted to see if better results can be achieved

by applying ‘RandomizedSearchCV’ and ‘GridSearchCV’. Since hyper-parameter tuning is a

trial-and-error procedure, a random hyper-parameter grid was created to consider different

combinations. An initial trial was used for distributions of selected hyper-parameters as listed in

‘random grid’ while all other parameters remain unchanged. For classification problem, it is

necessary to transform the labels to integers for the function by using ‘LabelBinarizer’ to

transform string labels to NumPy arrays. Then the process of searching for the best parameters

for the dataset started, and the original classifier was used as estimator, the parameter distribution

is the random grid just created. One hundred combinations of parameters and three sub dataset

were considered for cross validation. To deal with multi-class classification problem, micro_f1

was selected for evaluation metric. The ‘best’ parameter generated from RandomizedSearchCV

is shown in Figure 50. These ‘optimal’ parameter values generated by ‘RandomizedSearchCV’

were then used for the classifier.

The hyperparameter values currently used (before optimization) showed an accuracy of 0.6167.

The above optimization steps resulted in an accuracy of 0.6233, which had only trivial

improvement of 0.66% (small though, but proves the limit of the adopted model with existing

dataset) over the original model.

47

Figure 50. Hyper-parameter tuning for Random Forest model

The results suggested adding daily accumulated precipitation data didn’t help improve the

accuracy for ground water depth prediction, but ‘month’ and ‘monthly mean precipitation’

helped improve the accuracy.

Table 3. Comparison of accuracy of 5 test data groups with randomly allocated data

Categorical Variables Continuous Variables Accuracy

(average of five

randomly selected

validation sets)

Drilled

Year

Drilled

Month

Drilled

Day

Northing Easting Elevation Precipitation

(12z of

drilled day)

 0.607

0.608

 0.621

0.623

Table 3 shows the mean accuracy of different variable combinations, each accuracy is the

average accuracy of five groups with randomly selected 10 percent of training set. The results

suggested that adding more variables won’t help increase the accuracy. It suggested that fewer

categories of variables seemed to have better prediction accuracy, indicating too many individual

uncorrelated decision trees might confuse the Random Forest model.

48

Finally, comparison study of Fast.ai neural network model and Random Forest model was made

by calculating confusion Matrix shown in Figures 51 and 52. Same dataset was used for fast.ai

neural network model (Fast.ai 2020) and Random Forest model evaluation here. Confusion

matrix offers a metric for evaluating a classifier model. For all confusion matrices predicting any

arbitrary number of n classes, an n x n matrix is developed in which the diagonals represent true

predictions and any value off diagonal is an error in prediction. An independent test set has been

created to evaluate the performance of fastai.tabular learner (Fast.ai 2020) and RandomForest

model. Testing set size is 100, and training set size is 7,436. The prediction from each model was

compared by confusion matrix which shows the distribution. It is concluded that Fast.ai neural

network model and Random Forest model provides similar performance results for the

groundwater data under consideration.

Figure 1. Confusion matrices of Fast.ai neural network model and Random Forest model for
groundwater data

49

Figure 51. Performance results of Fast.ai neural network model and Random Forest model for
groundwater data

50

CHAPTER 6: SUMMARY & CONCLUSIONS

In this study, data-driven machine learning models that can be used to represent a variety of

highway datasets such as drilling and pavement data, pavement thickness data, object detection

in highway image data and drilling project schedule estimation have been investigated and their

prediction performance were tested for validity. Team effort and coordination with MDOT SHA

staffs and engineers has been recognized as a very important factor to the success of this

research, especially in identifying the research opportunities in highway datasets, retrieving and

converting raw datasets from database servers to make them suitable for machine learning use,

and providing professional guidance on machine learning model feature variables and desired

output formats (e.g., FWD data bucket sizes in prediction). Four types of machine learning

algorithms were studied, including neural network model for tabular data, deep learning based

object detection model, reinforcement learning and random forest models for different

applications. Specifically, the research team developed and tested a simple reinforcement

learning model to demonstrate drilling project schedule estimation using 212 historical data

records. The research team also developed and tested random forest model for one type of

drilling data – groundwater depth. A state-of-art object detection model using YOLO v3

algorithm were also tested for detecting objects of interest such as traffic barrier end treatments

and insect blocking in ROW images. The YOLO v3 spp model exhibited faster training and

testing speed, as well as increased accuracy in detection and full performance metrics output,

compared with other open-source object detection models tested in this study.

The research team also developed processes to perform QA/QC on ROW imagery in order to

quickly scan and find images with different types of defects including blurriness, underexposure,

overexposure, no signal, discolored, and signal issues. A python script has been developed that

can run any set of images for a particular year and county in Maryland. The research team have

tested this basic QA/QC tool with the ROW images collected from one county in Maryland and

it was found this method can effectively find potential issues. Optimization of the blurry and no

signal thresholds was also done to catch blurry photos and minimize false positives.

In general, machine learning models are trained to represent high dimensional data (including

images) or complex relationship hidden in the dataset for which traditional mathematical models

51

are ill to describe. The accuracy of this representation relies on the amount and quality of the

data available for model training in order to remove the uncertainty and noise from a variety of

factors. It is found that data size and quality was critical to the performance of machine learning

models under consideration. For the drilling datasets considered, the data size ranged from a few

hundred to nearly 270K data samples for SPT (standard penetration test) Grainsize data. For the

Fast.ai neural network models trained with these drilling datasets, the following accuracy values

were observed: For the SWM Infiltration dataset with only 491 data samples, the highest

accuracy achieved was 0.729, partly because this model involved only two classes for the target

variable to predict and thus only a simple relationship is expected to be revealed by the model

between the feature variables and the target variable. However, for the SPT Grainsize data with

274K data samples, slightly lower accuracy value of 0.67 was observed in training, due to more

grainsize buckets (classes) for the target variable and thus a more complex relationship. For the

SPT N (SPT counts) data with approximately 33K data samples, a fairly low accuracy of 0.37

was seen, likely due to the even more complex relationship to be represented in this data.

Therefore, the machine learning model performance depends not only on the data size and data

quality of the highway dataset under consideration, but also the complexity of the inherent

relationship hidden in the data which machine learning model attempts to represent. As more

data samples become available in the future, it is expected that machine learning model

performance will continue to improve. For data quality control, data preparation including

extracting relevant data entries from existing datasets, removing null data, discarding redundant

data samples, filling missing (null) values, normalization to make the data suitable for machine

learning model use have been conducted as a standard practice.

For the reinforcement learning models developed for drilling project schedule estimation, only

212 historical records were available. This simple model was to generate a Q-table by finding the

closest sample to the input among all available historical records. The historical records have

been sorted in ascending order based on corresponding resource demand value. In this study,

three types of resource demand functions were defined and their performance in correlation with

the target variable – project duration was compared. More complex functions for the resource

demand metrics such as predictions by advanced machine learning models can be adopted in the

future to seek close correlation with the real data. Training data size and quality is also an

52

important factor affecting the performance of the reinforcement learning model for project

schedule estimation. To further improve this model, future work is required to collect additional

real data since 212 data samples were found to be insufficient to train a reinforcement learning

model with high accuracy for project schedule estimation.

For the YOLO v3 spp object detection models, training datasets with 50 to 70 images usually

gave reasonably good accuracy for the objects of interests in this study including traffic barrier

end treatments and insect blocking detection in the ROW images. The model exhibited fast

training and testing speed. Training time took approximately 4.3 hours for the traffic barrier end

treatment objects and 6.5 hours for insect blocking detection for around 200 training epochs.

Once the YOLO v3 spp model was trained, using the model to execute the object detect task took

less than 1 second in scanning each image with pixel size 1920 x 1080. For insect blocking

detection, it took 68.4 seconds total to complete 3,199 pictures used for test (thus each picture

took about 0.16 seconds to scan). The YOLO v3 spp model in detecting the three objects of

interest in this study have shown fairly high accuracy over 90% for the test image datasets.

Transfer learning is the recommended training strategy for object detection application; by doing

so the training data size can be made far less than the super large data size that would be

typically required for training a deep learning model from scratch.

Based on the findings from this research, the suitability and applicability of each machine

learning model type considered in this study of highway datasets are summarized below,

 Fast.ai neural network model for tabular data: Fast.ai model has demonstrated the state-

of-art performance in the tabular data modeling in this study. Tabular data here refers to

text (or ascii data) data typically stored in a SQL database and spreadsheet file. Two

types of feedforward neural network models are available in Fast.ai for tabular data

modeling: regression model and classification model. For classification model, the

training target is to classify the data samples into corresponding discrete classes. The

output of a regression model is nonetheless a continuous variable. In this study, default

feedforward neural network model architecture generally had four hidden layers and the

400 to 1,200 neurons in each layer depending on the quality and amount of data samples

available for training. The prediction accuracy derives from the neural network models

53

trained with large number of data samples to represent the relationship hidden in the

selected dataset. Default number of training epochs was initially set as 40 in this study

and optimal training of the neural network model should be done by stop training when

the training loss value is close to validation loss value.

 Object detection model: YOLO v3 spp model adopted in this study demonstrated state of

the art performance in object detection with high computation speed and better

computational efficiency. YOLO v3 model can be used to detect multiple classes of

objects in a single picture. Training datasets for a single class YOLO v3 model require 50

to 100 images that ideally have the object of interest presented at different scales and

with different backgrounds. With commonly available computing hardware (e.g., Nvidia

Titan GPU card), training time usually took a few hours with 200 training epochs.

 Reinforcement learning: reinforcement learning models are well-suited to construction

resource management and construction schedule estimation applications. Reinforcement

learning models have been used for decision-making policies as deep neural networks

analogous to the models used for game-playing agents. Q-learning is a commonly used

model-free approach which can be used for building the environment by training an

agent. In this study, Q-learning algorithm was adopted to build a reinforcement learning

model for project duration estimation. While this preliminary study showed initial

promise of reinforcement learning model training, additional data samples which fully

captures the influencing factors and complex relationship in drilling project schedule

estimation are needed to further optimize the reinforcement learning model. In this

reinforcement learning model trained with 212 data samples, 5,000 simulation cycles

generally lead to convergence in training.

 Random forest model for tabular data: Random forest models are generally believed to

outperforms neural networks if applied to small datasets less than 1K data samples. In

this study, random forest method was tested on two drilling dataset with relatively small

size: groundwater depth data and SPT N data. However, the test results showed that the

Fast.ai neural network model and Random Forest model trained with these two datasets

provide similar performance results. For tabular data modeling, it is thus recommended to

use Fast.ai neural network model for tabular data to reduce learning curve and streamline

54

the machine learning modeling process by avoiding different algorithms for the same

dataset.

55

REFERENCES

Andriotis, C.P., K.G. Papakonstantinou. (2019). “Managing engineering systems with large state
and action spaces through deep reinforcement learning,” Reliability Engineering & System
Safety, Volume 191: 106483.

Bhatt, S. (2018). “Reinforcement Learning 101: Learn the essentials of Reinforcement
Learning!” Towards data science, https://towardsdatascience.com/reinforcement-learning-101-
e24b50e1d292 (posted March 19, 2018).

Biau, G. (2012). “Analysis of a Random Forest Model,” J. of Machine Learning Research, 13:
1063-1095.

Breiman, L. (2001). “Random forest,” Machine Learning, 45: 5-32.

Fast.ai (2020). Tabular model, https://docs.fast.ai/tabular.model.html.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press, Boston,
Massachusetts. ISBN: 9780262035613.

Glorot, X., & Bengio, Y. (2010). “Understanding the difficulty of training deep feedforward
neural networks.” In Aistats (Vol. 9, pp. 249-256).

Ioffe, S., C. Szegedy, (2015). “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” https://arxiv.org/abs/1502.03167

Lawal, M.O. (2021). “Tomato detection based on modified YOLOv3 framework,” Scientific
Reports, vol. 11, Article number: 1447.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). “Deep learning.” Nature, 521(7553), 436-444.

Liu, H. and Zhang, Y. (2020). “Bridge condition rating data modeling using deep learning
algorithm,” Structure and Infrastructure Engineering, Published online,
https://doi.org/10.1080/15732479.2020.1712610

Liu, H. and Zhang, Y. (2019). “Image-driven structural steel damage condition assessment
method using deep learning algorithm.” Measurement, 133: 168-181.

Mao, H., Alizadeh, M., Menache, I, and Kandula, S. (2016). “Resource Management with Deep
Reinforcement Learning,” HotNets-XV, November 9-10, 2016, Atlanta, GA, USA.

Redmon, J. and A. Farhadi. (2018). “YOLOv3: An Incremental Improvement,”
arXiv:1804.02767 [cs.CV].

Santurkar, S., D. Tsipras, A. Ilyas and A. Madry. (2019). “How Does Batch Normalization Help
Optimization?” NerurIPS’18, https://arxiv.org/abs/1805.11604

56

Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning: an Introduction, 2nd edition, The
MIT Press, Cambridge, Massachusetts.

Ultralytics. (2020). YOLO v3 spp model for object detection,
https://github.com/ultralytics/YOLOv3.

