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Chapter 1: Introduction 

1.1 Research Background 

Traffic incidents have long been recognized as the main contributor of congestion 

in highway networks. Incidents, as defined in this study, include disabled vehicles, fire, 

road debris, construction, police activity, and vehicle crashes. On congested highways, 

any incident, regardless of whether they involve personal fatalities, injuries, or property 

damages, will cause considerable reduction in roadway capacity due to lane closures or 

impediments. As reported in the literature, a one-lane blockage on a four-lane road will 

reduce the roadway capacity by 60 percent (TRB, 2000). The reduction in capacity 

during the incident duration will inevitably result in heavy congestion and delay, thus 

leading to enormous socio-economic loss. In day-to-day traffic control and management, 

with a reliable method for predicting incident duration in real time, responsible agencies 

can convey information to travelers via the variable message signs (VMS), estimate the 

resulting queue length and the corresponding total delay, and assess the need to 

implement detour operations or any other control strategies. Thus, an effective model for 

predicting the duration of a detected incident is one of the essential tools for traffic 

agencies in mitigating nonrecurrent congestion in highway networks. 

1.2 Definition of Incident Duration 

According to the Highway Capacity Manual (TRB, 2000), the entire duration of 

an incident consists of four phases, as shown in Figure 1.1. The first phase, the detection 

time, represents the time elapsed from the occurrence of the incident to its detection. The 

second phase, response time, corresponds to the period of time between the detection of 

the incident and the arrival of any emergency or incident response unit. The third phase, 
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clearance time, is defined as the time elapsed from the first arrival of response units (e.g., 

police or emergency vehicles) to the time that the incident is cleared. The last phase, the 

recovery time, measures the time required for traffic to return to its normal condition.  

 

Figure 1.1  Phases of Traffic Incident Duration  

In general, it is difficult to know the exact timestamp of incident occurrence; 

usually, the recovery time is also regarded as being out of scope for incident duration 

studies. Moreover, the database used for this study includes reliable records only for 

response and clearance times. Thus, for this study, incident duration is defined as the time 

elapsed from incident detection to its clearance, which is the sum of the response and 

clearance times.  

1.3 Study Purpose and Scope 

Due to the lack of available data, incident duration was usually estimated based 

on field experience rather than on rigorous statistical models. Improvements in reporting 

techniques and in incident information databases have facilitated detailed analyses of 
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critical variables that influence incident durations, which has facilitated their prediction. 

Previous studies in this field have resulted in different prediction methods and models. 

However, it must be noted that these prediction models were developed based on sets of 

data derived from different sources. Thus, information available for predicting the 

duration of an incident may vary among different databases. It has also been observed 

that incident duration is influenced by various location-specific factors. Hence, to ensure 

reliable and efficient modeling of incident duration prediction, one needs to calibrate the 

model from a well-designed database which includes all critical information for that area. 

Such a model can then be confidently used to implement detour operations or any other 

control strategies, along with appropriate mitigation measures.  

The objective of this study is to develop a set of models for estimating the 

duration of a detected incident and for identifying variables that may significantly 

influence the incident duration in the state of Maryland. This study used the CHART 

(Coordinated Highways Action Response Team) database from the Maryland State 

Highway Administration (SHA).  

This study begins with a review of related literature in Chapter 2, including the 

most representative approaches for predicting incident durations: (1) probabilistic 

distributions, (2) conditional probabilities, (3) linear regression models, (4) time-

sequential models, (5) decision trees and classification trees, and (6) discrete choice 

models, and (7) Bayesian classifier. 

Chapter 3 focuses on the description of available data and the statistical analyses 

of interrelations between key variables. This chapter includes a preliminary analysis for 

the distribution of incident durations, statistical tests for independent variables using the 
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ANOVA test, Tukey test, and multiple correspondence analyses. The final subsection 

discusses the average incident duration classified by key variables. 

Chapter 4 presents the procedures adopted for model development and evaluation, 

along with the results of model estimation and validation. This chapter begins with 

preliminary analyses using the classification and regression tree (CART) model. Based 

on the findings from the CART, the chapter goes on to explore a new model, named the 

rule-based tree model (RBTM). Detailed procedures for this model’s development and 

performance, as well as its validation, are also included in the subsections that follow. 

Chapter 4 concludes with the overall findings from the RBTM, and indicates the 

necessity of calibrating supplemental models to enhance the performance of the primary 

model. 

Chapter 5 illustrates the two different types of supplemental models for predicting 

incident duration. It first discusses the calibration of multinomial logit (MNL) models 

and their performance with a test data set. This is followed by the development of 

multiple linear regression models, for types of incident with small sample data sets, and 

their performance. The last section highlights potential applications of supplemental 

models. 

Chapter 6 presents further research on fatality incidents, due to the uniqueness of 

the data. The study adopts the Naïve Bayesian Classifier (NBC), based on integration of  

the CHART database with the Maryland State Police Department Accident Report 

database.  

Chapter 7 discusses major applications of the developed incident duration models. 

It includes models for the total delay estimation and queue length computation based on 
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the estimated incident duration. To better illustrate application of the model, estimated 

results for delay and queue length are presented using an actual incident from the 

CHART database.  

Chapter 8 summarizes the primary research findings and conclusions of this 

study. Future research needs are also discussed in this chapter. 
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Chapter 2: Literature Review 

Incident duration has been studied by numerous researchers for several decades 

using various methodologies. The most representative approaches are (1) probabilistic 

distributions, (2) conditional probabilities, (3) linear regression models, (4) time-

sequential models, (5) decision trees and classification trees, (6) discrete choice models, 

and (7) Bayesian classifier. Although a variety of techniques exist that provide acceptable 

results, they cannot be directly applied to incidents occurring at any other locations. Each 

model was developed with different incident data sources and descriptive variables and 

thus yields somewhat different results. Therefore, for any target application, it is 

necessary to develop a new model for different traffic conditions and available data 

sources.  

 The first approach to modeling incident durations reviewed in this study is the 

probabilistic model, which is relatively straightforward to use in forecasting the incident 

duration. The key aspect of this approach is to view the duration as a random variable and 

attempt to find a probability density function (PDF) that can fit to the data set. Golob et 

al. (1987) conducted their research using approximately 530 incidents involving trucks, 

and found that incident durations could be modeled with a log-normal distribution. Their 

finding has been supported by other studies by Giuliano (1989), Garib et al. (1997), and 

Sullivan (1997) for freeway incident durations. In 1999, Ozbay and Kachroo also found 

that the distribution of incident durations from their data set showed a shape very similar 

to log-normal distribution, although a few statistical significance tests rejected their 

hypothesis. However, they realized that when the study data set was subdivided by 

incident type and severity, these subsets followed a normal distribution. This finding has 
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an important implication, since it supports the theory that the incident duration is a 

random variable (Smith and Smith, 2002). Similarly, Jones et al. (1991) discovered that a 

log-logistic distribution could be used to describe their study data set from Seattle. In 

2000, Nam and Mannering found that their data set could be illustrated with the Weibull 

distribution. However, Smith and Smith (2002) could not find an appropriate probability 

distribution, including log-normal and Weibull distributions, to fit the incident clearance 

times for their study data.  

 Probability models for incident duration can be extended to conditional 

probability models. The key idea of such models is to find the probability distribution of 

incident durations under certain given conditions; for example, the probability of an 

incident lasting 30 minutes, given the condition that the incident has already lasted for 10 

minutes. Intuitively, it is noticeable that the probability of the end of an incident would 

vary, depending on how long the incident has lasted (known as duration dependence in 

Nam and Mannering [2000]) and the incident characteristics. One interesting approach 

under this concept is the hazard-based duration model. This model allows researchers to 

formulate incident durations with conditional probability models. Such models have been 

widely used in the biometrics and industrial engineering fields to determine causality 

from the duration data. Due to their similarity with the nature of traffic incident duration, 

their theoretical concepts and models have recently been applied in the transportation 

field. With such an approach, researchers’ interests have expanded from simply 

estimating and predicting incident durations to computing the likelihood that the incident 

would finish in the next short time period, given its elapsed duration. One of the most 

representative studies using this methodology was conducted by Nam and Mannering 
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(2000), using a two-year data set from Washington State. Their study showed that the 

duration for each incident phase (i.e., detection/reporting, response, and clearance phases) 

is significantly affected by numerous factors and that different assumptions of 

distribution are recommended for different incident phases. They also found that the 

estimated coefficients were unstable through the two-year data set used in developing 

their model. As Nam and Mannering concluded, this approach is more useful for 

determining which variable has greater influence on incident duration than for estimating 

or predicting the incident duration for a set of given explanatory variables.  

 Another simple methodology for predicting incident durations is linear regression 

models. These models usually include a number of binary variables as independent 

variables to indicate incident characteristics, and a continuous or categorical variable as a 

dependent variable (i.e., incident duration). One of the best-known linear regression 

models for incident prediction was developed by Garib et al. (1997) using 277 samples 

from California. They used various independent variables to represent incident 

characteristics (e.g., incident type, number of lanes affected by the incident, number of 

vehicles involved, and truck involvement) and weather conditions (rainy or dry). They 

also included all possible combinations of the independent variables to develop the best 

model. The final incident duration model from their research is as follows: 

876521 24.068.017.02.0027.087.0)( XXXXXXDurationLog −+−++=  

where  Duration = incident duration (minutes) 

 X1 = number of lanes affected by the incident 

 X2 = number of vehicles involved in the incident 

 X5 = truck involvement (dummy variable) 
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 X6 = morning or afternoon peak hour indicator (0: morning peak hour; 1: 

afternoon peak hour) 

 X7 = natural logarithm of the police response time (minutes) 

 X8 = weather condition indicator (0: no rain; 1: rain) 

This model showed 0.81 for adjusted R2. The logarithm form of incident durations 

indicated that the incident durations in this data set followed a log-normal distribution, 

which is supported by the Kolmogorov-Smirnov test. This result is similar to those from 

Golob et al. (1987) and Giuliano (1988). According to the authors, the police response 

time was the most significant factor affecting incident durations, followed by weather 

condition, peak hour, truck involvement, and the combined effect of the number of lanes 

and vehicles involved in the incident.  

Khattak et al. (1995) realized that the full set of variables for incident forecasts 

would be available at the moment the incident is cleared. Although prediction models 

based on this complete set of variables would be more accurate and reliable, they are less 

practical for the real-time prediction of incident durations because this full set of 

variables can only be available after the incident is cleared. Thus, Khattak et al. 

introduced a time-sequential model, based on the idea that the prediction of incident 

duration made earlier in the incident life would be more informative to incident 

management, even with lower accuracy and reliability. The model that they developed 

has ten distinct stages of incident duration, based on the availability of information. Each 

stage indicates different ranges of incident duration and has a separate truncated 

regression model. At each stage, progressively more variables are included to explain the 

stage duration. Despite its originality and reasonability, this model was not tested or 
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validated, due to the lack of field data. The authors also mentioned that the intention of 

their study was to introduce and demonstrate the time-sequential model rather than to 

prove the performance of their model in traffic operations.  

Another approach available in the literature is the decision tree model. The 

purpose of applying this methodology is to discover patterns in a given data set without 

considering the fundamental probabilistic distribution (Smith and Smith, 2001). Smith 

and Smith (2001) pointed out that the pattern-recognition model has been used recently to 

develop incident duration models. One representative model was developed by Ozbay 

and Kachroo (1999) for the Northern Virginia region. They began by developing a model 

to predict clearance times using linear regression, based on a large sample size. 

Unfortunately, they completed the analysis with a poor result (R2≈0.35) and learned that 

incident durations follow neither a log-normal nor a log-logistic distribution. As an 

alternative method, they explored a decision tree model and finally generated the relation 

patterns shown in Figure 2.1 for predicting clearance times.  

It can be noted that the incident tree consists of a series of decision variables. For 

instance, the tree uses incident type as the first variable to decide if the detected incident 

type is known or not. Once it is classified as an unknown type, the tree immediately 

provides 45 minutes for the clearance time. Otherwise, it goes to the next level to decide 

which type of incident it falls into. After that, it will face the next decision variable (e.g., 

“Is wrecker used?”) and so on. Also, the outcome from this tree is an average clearance 

time under current conditions, as estimated from past records.  
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Figure 2.1  Part of the Complete Decision Tree to Predict Clearance Time, by Ozbay and 
Kachroo (1999) 

Ozbay and Kachroo were satisfied with the new tree, based on the test results, 

since about 57.14 percent (44 out of 77) of tested incidents were predicted within ten 

minutes of prediction error. They also found that the large differences between predicted 

and actual clearance times were caused by numerous outliers.  

Smith and Smith (2001), who were inspired by the Ozbay and Kachroo study, 

tried to develop a similar classification tree. They concluded that a classification tree 

developed on the basis of a reliable and sufficient database performs well, even though 

the results of their classification tree were not satisfactory due to poor data quality. A 

detailed discussion regarding classification trees will be presented in Chapter 4. 
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Another approach reviewed for this study is the discrete choice model. Most 

studies in the literature have treated incident duration as a continuous variable. Lin et al. 

(2004) developed a system that integrates the discrete choice model and the rule-based 

model to predict incident duration. They first adopted ordered probit models to classify 

sample data for incident duration into several time intervals, and then developed a rule-

based supplemental model to enhance the accuracy of prediction results. 

One of the most recent studies published develops a model using the Naïve 

Bayesian Classifier. Boyles et al. (2007) found that the model results from the NBC were 

satisfactory compared with the results from the linear regression model. 

Building on the work by Lin et al., and using an enriched data set, this study 

explored the integrated application of a set of new models, including a rule-based tree 

model, a discrete choice model, and a multiple regression model. For further research 

dedicated to incidents associated with fatalities, the NBC was applied to enhance model 

performance. The proposed methodology will be discussed in more detail in Chapters 4, 

5 and 6. 
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Chapter 3: Analysis of Incident Duration Data 

3.1 Introduction 

 This chapter presents the description of data used for this study and the statistical 

analyses of interrelations between key variables. It includes the distribution of incident 

duration, statistical tests for independent variables using the ANOVA test, Tukey test, 

and multiple correspondence analyses (MCA). The final section discusses the average 

incident duration, classified by key variables. 

3.2 Data Description 

 To evaluate the performance of its incident response operations, the SHA has 

developed an incident management database called CHART (Coordinated Highways 

Action Response Team). Since 1996, CHART has collected major and minor incidents 

that have occurred in Maryland, and the highway system of CHART-II is its most 

recently upgraded database. This study is based on highway incident data extracted from 

CHART-II from the years 2003 to 2005 for model development, and from year 2006 for 

model validation. The data set from CHART-II for this research includes: 

• Incident duration: detected, responded, and cleared timestamps; 

• Incident characteristics: number of shoulder lanes blocked, total number of 

lanes at the incident location, and number of lanes blocked (for the same 

direction, the opposite direction, and for both directions); 

• Ratio of lane blockage: number of lanes blocked (for the same direction, the 

opposite direction, or for both directions)/total number of lanes at the incident 

location; 
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• Type of incident: property or personal damage by collision and fatality by 

collision, as well as debris, disabled vehicle, vehicle fire, police activities, off-

road activities, and emergency roadwork; 

• Response team information: participation of SHA patrol; 

• Information about involved vehicles: number of vehicles involved, type of 

vehicles involved (truck-trailer, single-unit truck, or pickup van); 

• Time: peak time (AM peak and PM peak) indicators, weekend indicator, night 

indicator, and time in hours when an incident was detected; 

• Location information: county, road name, and exit number for I-495, I-95, I-

695, and I-270 only; and 

• Pavement condition: dry, wet, snow/ice, chemical wet, and unspecified. 

In this study, any record that included a missing value for any information was 

excluded from consideration for statistical analysis, model development, and validation. 

Since CHART-II records the exit number of the incident location only for four major 

interstate roads, I-495, I-95, I-695, and I-270, the specified location information is 

available only for part of the entire sample. As mentioned earlier, the incident duration 

represents the sum of the response time and clearance time, since the incident occurance 

time is not available. In addition, records with durations below five minutes were 

excluded, since such short durations seemed unreasonable. After cleaning up the raw 

database, 6765 records were left for statistical analysis and model development, and 6501 

for the model validation.  
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3.3 Preliminary Data Analysis  

3.3.1 Incident Duration 

 As mentioned in the literature review, incident durations were found to follow 

several different, but similar, shapes of distribution. Golob et al. (1987) discovered that, 

by using data for vehicle crashes with trucks involved, the total of incident durations fit in 

the log-normal distribution, while, according to Jones et al. (1991), incident durations 

could be illustrated by the log-logistic distribution. The findings of Golob et al. have been 

supported by several researchers in the subsequent years (Giuliano, 1989; Garib et al., 

1997; and Sullivan, 1997). Ozbay and Kachroo (1999) found that the durations of 

incidents of similar type and severity showed a normal distribution, while Nam and 

Mannering (2000) suggested a Weibull distribution for incident durations. Except for the 

normal distribution, the common feature of those distributions is a shift to the left so that 

a large portion of the duration data is concentrated on shorter durations, as shown in 

Figure 3.1, below (Smith and Smith, 2002). 

 

Figure 3.1  General Shape of Log-Normal Distribution (Smith and Smith, 2002) 
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Figure 3.2  Histogram with a Normality Curve of the Incident Duration Used in This Study 

To understand the distribution of incident durations, the entire available data set 

(including data with incident durations of less than five minutes) is plotted in the 

histogram shown in Figure 3.2. The available incident durations clearly form a shape of 

distribution similar to that shown in Figure 3.1. Considering the quantile-quantile plot (Q-

Q plot) and probability plot (P-P plot) for log-normal distribution (Figure A1.1 in 

Appendix 1) and Weibull distribution (Figure A1.2 in Appendix 1), the data suggest a 

distribution that is closer to a log-normal distribution than to the Weibull distribution. 

However, the hypothesis tests, such as the Kolmogorov-Smirnov test, Anderson-Darling 

test, and chi-square test for distributions of log-normal, log-logistic, Weibull, and so on, 

all reject the log-normal distribution hypothesis at 0.01 and 0.05 significance levels.  

Incident Duration (mins) 
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 Since the following statistical tests are performed under the assumption of 

normality of the data set, it is essential to transform the original data to fit a normal 

distribution. Although various transformation techniques exist, Johnson and Wichern 

(1993) and Dimakos suggested that power transformations would be appropriate when 

the selection of transformation is not really obvious. Box and Cox (1964) stated that 

power transformations shrink large values of a variable X and, at the same time, they 

enlarge small values. The family of power transformations, which is defined with λ, has 

the following general form (Dimakos): 

λ

λ
λ 1−
=

xx , where 0≠λ  and x > 0    (Eq. 3.1) 

xx ln=λ , where 0=λ  and x > 0    (Eq. 3.2) 

The value of λ is selected in order to maximize the following function: 
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where n is the number of observations, xj is the original value of the jth observation, and 

λx  is an arithmetic average of the transformed observation and is defined as: 
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By using the Box-Cox macro introduced by Dimakos, the optimal value of λ found for 

the data set of this study is 0.1. The transformed data set is much closer to fitting a 

normal distribution, as shown in the descriptive statistics (e.g., histograms (Figure 3.3), 

Q-Q plots (Figure A1.3), or P-P plots (Figure A1.4)). In a histogram, the overall shape of 

the distribution of the transformed data set becomes nearly symmetrical (see Figure 3.3). 

The Q-Q plot and the P-P plot also show that the Box-Cox power transformation helps 
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the original data set convert to a normal distribution, because the transformed 

observations are placed near the diagonal dashed line (see Figure A1.3 and A1.4, 

Appendix 1). Though the descriptive statistics demonstrate that the Box-Cox power 

transformation works quite well to alter the original distribution to a normal distribution, 

the hypothesis tests still reject the null hypothesis (H0 : the data follow a normal 

distribution) at 0.01 and 0.05 significance levels. Appendix 1 presents the results of basic 

statistical measures and hypothesis tests by SAS.  

 

Figure 3.3  Histogram of the Box-Cox Power-Transformed Data Set 

The same procedure is performed with the data set which excludes incident 

durations of less than five minutes. The optimal value of λ for the truncated data set is 
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found to be -0.2. Even though the descriptive statistics for this case also show that the 

distribution is quite close to a normal distribution, all of the hypothesis tests reject its 

normality at 0.01 and 0.05 significance levels. However, the statistics of tests become 

much smaller than those for the original data set which includes incident durations of less 

than five minutes (see Table 3.1). This means that the truncated data set fits better to a 

normal distribution when compared to the original data set.  

Table 3.1  Summary of Hypothesis Tests Statistics 

Using the Original Data Set 

Model Parameter N Chi-Sq P-value A-D P-value K-S P-value 

λ

λ
λ 1−
=

xx  λ = 0.1 7798 393.6 0.00 19.24 < 0.005 0.03745 < 0.01 

Using the Truncated Data Set (Incident Duration >= 5 min) 

Model Parameter N Chi-Sq P-value A-D P-value K-S P-value 

λ

λ
λ 1−
=

xx  λ = -0.2 6765 250.9 0.00 3.607 < 0.005 0.01616 < 0.01 

Incident Duration as Categorical Variables 

 Although the incident duration variable is continuous in nature, it is more useful 

and practical to predict the duration by interval, such as between 20 and 30 minutes, 

rather than with a precise prediction of, for example, 26.5 minutes. 

 This study employs the following procedures to categorize the continuous 

variable. First, incident durations are categorized based on the cumulated percentage of 

the available samples. A category is defined by the range that covers approximately 15 
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percent of total samples, while the records with durations longer than 120 minutes form 

the last category. Smith and Smith (2002) classified their dependent variable (clearance 

time) into three categories – short, middle and long – for applying the CART. Since the 

CART was used to build a preliminary model in this research, a three-category variable 

similar to the one used by Smith and Smith (2002) was also considered to be one option 

for classifying the dependent variable set. A four-category variable (short, middle, long, 

and very long) was explored as well. For the more detailed analysis using the primary 

model, the RBTM, incident durations were also categorized for every five minute interval 

up to 120 minutes. As in the first categorization, records with durations longer than 120 

minutes constitute the last category. Categories of the dependent variable used for this 

study are summarized in Table 4.1 in Chapter 4. 

3.3.2 Independent Variables 

Specifications of Independent Variables 

 Unlike the previous study by Lin et al. (2004), this study specifies independent 

variables as discrete variables, such as 0, 1, 2 and 3 if they have an inherent order, based 

on the actually recorded values, rather than represented as dummy variables. This 

specification can help reflect the possibility of different impacts when the condition 

becomes more severe. Independent variables without inherent order such as counties and 

hours incident occurred remains as dummy variables. These independent variables are 

summarized, along with other variables, in Table 3.2. 

Statistical Tests for Independent Variables 
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In this study, a one-way analysis of variance (ANOVA) test is first carried out to 

see the effect of each independent variable on the incident duration. For the 

multicategorical variables showing significantly different impacts on the incident 

duration, a further analysis (Tukey Test) is carried out to regroup the categories of the 

variables. Furthermore, an MCA is implemented to determine a set of most significant 

variables which can explain most parts of the entire data set. 

1. ANOVA Test 

 ANOVA tests were performed to test whether any of the descriptive variables had 

significant effects on the incident duration. Each of the descriptive variables was tested 

with transformed incident durations, and all of them showed significant effects, except 

the indicator of Pick Up Van Involvement at the 0.01 and 0.05 significance levels. The p-

value of the ANOVA test for this variable is 0.094, so that the null hypothesis, the mean 

of incident durations with pick up vans involved is equal to the mean of those without 

pick up vans involved, cannot be rejected. However, at the 0.1 significance level, this 

variable can still be included in the model development. 
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Table 3.2  Independent Variables Used for the Model Development 

Variables Original Range 
(Value or Category) 

Regrouped Range 
(Value or Category) 

Incident Nature 

Collision-Fatality 
Collision-Personal Injury 
Collision-Property Damage 
Disabled Vehicle 
Debris 
Fire 
Others (Police Activity, 
Emergency Road Work, 
Off-Road Work) 

Collision-Fatality 
Collision-Personal Injury 
Collision-Property Damage 
Disabled Vehicle 
Others (Debris, Fire, Police 
Activity, Emergency Road 
Work, Off-Road Work) 

Pavement Condition 

Dry 
Wet 
Snow/Ice 
Chemical wet 
Unspecified 

Dry 
Not Dry 

Road Name 

I-495 IL, OL 
I-95 N, S 
I-695 IL, OL 
I-270 N, S 
I-370 E, W 
I-68 E, W 
I-795 N, S 
I-83 N, S 
I-895 E, W 
I-97 N, S 
MD-295 N, S 
70 E, W 
US 1 N, S 
US 50 E, W 
Other 

G1 : I-495 IL, OL 
G2 : I-895 E, W 
MD-295 N, S 
I-270 N, S 
G3 : I-695 IL, OL 
I-95 N, S 
I-97 N, S 
US 50 E, W 
G4 : I-795 N, S 
I-370 E, W 
I-83 N, S 
70 E, W 
US 1 N, S 
Other 
G5 : I-68 E, W 

CHART Involved 0, 1 N/A 
Single-Unit Truck Involved 0, 1 N/A 
Pick-Up Van Involved 0, 1 N/A 

Tractor-Trailer Involved 0, 1 N/A 

No. of Single-Unit Trucks 
Involved 0, 1, 2, 3, 4 0, 1, >=2 

No. of Pick-Up Vans 
Involved 0, 1, 2, 3, 4, 5, 6, 8 (0 or 1), >=2 

No. of Tractor-Trailers 
Involved 0, 1, 2, 3, 4, 5, 6 0, 1, >=2 

Weekend 0, 1 N/A 
Peak Hour 0, 1 N/A 
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Variables (cont’) Original Range 
(Value or Category) 

Regrouped Range 
(Value or Category) 

No. of Vehicles Involved > 0 1, (2 or 3), >=4 

No. of Same-Direction Lane 
Blockages 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, >=3 

No. of Opposite-Direction 
Lane Blockages 0, 1, 2, 3, 4, 5 0, 1, >=2 

No. of Shoulder Blockages 0, 1, 2, 3, 4 0, 1, >=2 
Shoulder Blockage Indicator 0, 1 N/A 
Total Lane Blockages 0, 1, 2, 3, 4, 5, 6, 7, 8, 12 0, 1, 2, >=3 
Ratio of Same-Direction 
Lane Blockages 0.00 ~ 1.00 N/A 

Ratio of Opposite-Direction 
Lane Blockages 0.00 ~ 1.00 N/A 

Ratio of Total Direction 
Lane Blockages 0.00 ~ 1.00 N/A 

No. of Lanes (One 
Direction) 2, 4, 8 N/A 

Hour Incident Occurred 1, 2, 3, …., 23, 24 Day : 6 ~ 20 
Night : everything else 

Response Time (minutes) > 0.00 N/A 

County 32 different counties N/A 

2. Regrouped Independent Variables Using Tukey Test 

 To figure out which groups have similar properties so that they can be combined 

into one group, this study applied the Tukey HSD (honestly significant difference) test, 

which is designed for pairwise comparisons based on the studentized range proposed by 

Tukey in 1952. The test starts by sorting the means of groups in ascending order to 

calculate the difference in means for each pair of groups. Then, it computes the minimum 

pairwise difference required using the following formula (Tukey, 1952, 1953).  

S
MS

QHSD wg
a=min     (Eq. 3.5) 
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where Qa is a critical value from a studentized range statistic table at a level, MSwg is the 

mean square error within group from ANOVA, and S is the number of samples per group. 

In the above formula, HSDmin represents the minimum pairwise difference 

between the means of any two particular groups considered to be significant. Qα depends 

upon parameters k (the number of groups in the original analysis) and dfwg (the number of 

degree of freedom associated with MSwg in the original analysis) at α level. When the 

number of samples is not equal for each group, S is replaced with the harmonic mean of 

the grouped samples. Lastly, HSDmin is compared to the actual difference in means (ML-

MS, where ML is the larger mean value, while MS is the smaller mean value in two 

groups) for each pair of groups. If the actual difference is greater than HSDmin, the two 

groups are significantly different with respect to their means.  

When the Tukey test is implemented, one should be aware of the increment of the 

error rate, α, due to the repeating of procedures. To adjust this error rate, the Bonferroni 

inequality (Rencher, 2002) has been widely applied. The adjusted error rate by 

Bonferroni inequality is α/c, where c is the number of comparisons. The regrouped 

independent variables, using the Tukey test with the Bonferroni inequality adjustment on 

α, are summarized in Table 3.2, along with the original categories.  

Initially, the incident nature was categorized into seven classes. The Tukey test 

showed that two incident types, Debris and Fire, are not significantly different from the 

incident type Others. Hence, those three incident types (i.e., Debris, Fire, and Others) 

could be grouped as one large incident type. The number of data having single-unit trucks 

and tractor-trailers was recategorized into three groups (0, 1, and >=2), whereas the 

number of pick up vans was recategorized into two groups (0 or 1, and >=2).  
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3. Variable Selection Using MCA 

 The correspondence analysis (CA) was originally developed by Jean-Paul 

Benzécri in France in the early 1970’s (Benzécri, 1973). It has the same function as the 

factor analysis but is used mainly for categorical variables. Since this technique was first 

introduced in French, it took some time to reach popularity in English-speaking countries 

(Carrol et al., 1986; Hoffman and Franke, 1986). Similar techniques were also developed 

independently in other countries under different names, such as optimal scaling, 

quantification method, or homogeneity analysis (Hill and Lewicki, 2005). As the first 

step in performing CA, one must compute the relative frequencies for the frequency table 

of two variables, such that the sum of all entries of the table equals 1.0. The row or 

column totals in the relative frequency table are referred to as the row mass or column 

mass, respectively (Greenacre, 1984). In the table, rows and columns are completely 

independent, and the entries of the rows and columns can be recreated by the totals of 

rows and columns, which are referred as row and column profiles in CA (Hill and 

Lewicki, 2005).  

Under the condition that the rows and columns of the frequency table are 

completely independent of each other, the expected frequencies in the table can be 

derived from the respective column total times the row total, divided by the grand total, 

based on the well-known formula of the chi-square statistic for two-way tables. The 

differences (or deviations) from the expected values contribute to the overall chi-square. 

From this perspective, CA can be viewed as a technique to decompose the total chi-

square statistics, or an inertia, which is defined as chi-square divided by the grand total of 
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the frequency in CA (Greenacre, 1984), by expressing a small number of dimensions that 

represent the deviations from the expected values.  

A statistical software package (in this study, SAS) can produce the results of CA, 

including dimensions, corresponding values, eigenvalues, percent of inertia, and chi-

square. The dimensions are extracted to maximize the distances between row and column 

points.  

While CA is based on the two-way table, MCA is designed for more than two 

variables. Since MCA can be regarded as an extension of simple CA, the characteristics 

and interpretations of results are the same as those in CA. 

Since this study included more than two categorical predictors MCA was 

performed to find the most significant independent variables that could explain deviations 

from the expected values. Thus, regrouped variables were input to MCA, and 32 

dimensions, which contain all information in the input table, were extracted. Each 

dimension forms by linear relationship between coefficients and corresponding variables, 

e.g., j
j

ji XDim ∑= β , where βj is a coefficient, and Xj is a corresponding variable.  

In a dimension, the variable with the largest absolute value of coefficient 

represents the most significant variable and dominates that dimension (Jolliffe, 1972 and 

1973). Table A1.1 in Appendix 1 summarizes the largest coefficient values and the 

corresponding variables for these 32 dimensions. As shown in the table, the most 

significant factor in the first and second dimensions, which was also the most significant 

factor for the entire study, was the number of blocked lanes for the opposite direction 

greater than or equal to two. This result reflects that the incidents involving more than 

one lane blockage in the opposite direction were more likely to be severe and have a 
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longer duration. Although the total number of dimensions is 32, the variables 

representing all dimensions can be summarized as the following 11 variables, since some 

variables repeatedly appear in different dimensions. The categories which make the 

variable significant in MCA are indicated in parentheses. 

• No. of Lane Blockage for Opposite Direction (>=2) 

• No. of Single-Unit Trucks Involved (1 and >=2) 

• No. of Lane Blockage for Same Direction (2 and >=3) 

• Incident Nature (Others: Debris, Fire, Police Activity, Emergency Road Work, 

Off-Road Work) 

• Regrouped Road: Group 5 (I-68) 

• Incident Nature (collision fatality) 

• No. of Shoulder Blockage (>=2) 

• No. of Pick-Up Van Involved (>=2) 

• No. of Vehicles Involved (=1) 

• Shoulder Blockage Indicator (=0) 

• No. of Total Lane Blockage (>=3) 

3.4 Average Incident Duration 

Before starting the model development, the average incident duration was 

computed to investigate its relationships with explanatory variables. Tables 3.3(a)-3.3(c) 

summarize the statistical results of incident durations under different classifications. As 

shown in Table 3.3(a), the incident durations increased with the number of heavy 

vehicles (e.g., tractor-trailers, single-unit trucks, or pickup vans) involved. The same 

relation is also shown in Table 3.3(b), where the incident duration increases with the 
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number of blocked lanes. Incident durations on weekends and at night were generally 

longer than the durations on weekdays and in the daytime, due to the longer response and 

clearance times.  

It is noticeable that incidents occurring on the four major freeways, I-495, I-95, I-

695, and I-270, had relatively shorter durations than others. This can be explained by the 

locations of operations centers, which determine the accessibility of the response units. 

Maryland has six operations centers — one statewide operations center, and five traffic 

operations centers. Among them, five operations centers are located near those four major 

roads, because they are primary roads around the two metropolitan areas — Washington 

D.C. and Baltimore.  

Also, the incident durations were found to exhibit remarkable differences between 

different incident types. As shown in Table 3.3(c), the incidents caused by disabled 

vehicles had the shortest durations on average (22.47 minutes), followed by incidents 

involving property damage, others (fire, debris, emergency road work, police activities 

and off-road activities), and personal injuries. As expected, incidents causing fatalities 

usually resulted in the longest durations (208.66 minutes). Figure 3.4 illustrates the 

distribution of frequency across incident duration intervals for each type of incident. In 

the category of incidents with disabled vehicles, 96.3 percent of their durations were 

distributed between 5 and 70 minutes, and 63.3 percent were between 5 and 20 minutes. 

This reflects that incidents involving disabled vehicles are likely to have shorter 

durations.  

Incidents with property damage also showed a similar shape of distribution, and 

90.2 percent of such incidents took between 5 and 70 minutes. However, unlike the 
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incidents with disabled vehicles, they were quite evenly distributed up to 30 minutes. 

Incidents causing personal injuries and fatalities were more likely to have longer 

durations. For example, 94.2 percent of incidents resulting in fatalities lasted over 70 

minutes, and 78.6 percent of them lasted over 120 minutes. Note that 80.8 percent of 

incidents causing personal injuries resulted in durations longer than 20 minutes, while 

60.9 percent of all personal injury incidents took between 20 and 70 minutes. In the 

category of incidents classified as Others, incident durations distributed quite evenly 

across all intervals. These results are consistent with the observation that the distribution 

of incident durations varies with incident nature. Therefore, incident nature emerges as 

one of the most significant factors for classifying incidents of different durations. 
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Table 3.3(a)  Summary of Average Incident Duration Classified by Key Variables 

Variables Avg. Duration 
(minutes) Frequency 

No. of Tractor-Trailers 
0 34.89 5809 
1 51.95 780 
2 164.18 152 

>= 3 257.36 24 
No.of Single-Unit Trucks 

0 38.97 6101 
1 49.95 574 
2 81.66 77 

>=3 124.72 13 
No. of Pickup Vans 

0 41.5 5006 
1 35.6 1365 
2 43.57 333 

>=3 56.52 61 
No. of Vehicles Involved 

1 34.2 3090 
2 43.42 2393 
3 47.19 823 
4 51.61 278 

>=5 63.83 181 
Day/Night 

Day 36.06 5917 
Night 71.87 848 

Day of Week 
Weekday 39.34 6103 
Weekend 51.7 662 

Hour of Day 

Off-Peak Hour 45.3 4058 

Peak Hour 33.44 2707 
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Table 3.3(b)  Summary of Average Incident Duration Classified by Key Variables (cont’d) 

Variables Avg. Duration 
(minutes) Frequency 

Number of Lanes (One Direction) 

2 61.79 802 
4 37.85 5727 
8 34.02 236 

No. of Lanes blocked (In Same Direction) 
0 35.21 2623 

1 32.04 2656 

2 60.84 976 
3 71.58 342 

>=4 77.46 168 
No. of Lanes blocked (In Opposite Direction) 

0 39.41 6430 

1 50.5 221 

2 87.18 88 
3 91.66 19 

>=4 50.2 7 
Total number of Lanes Blocked 
 ( Same+Opposite direction) 

0 34.1 2511 
1 32.11 2632 
2 59.37 1034 
3 66.46 340 

>=4 81.45 248 
Shoulder Blockage 

No Blockage 38.84 2837 
Is Blocked 41.79 3928 
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Table 3.3(c)  Summary of Average Incident Duration Classified by Key Variables (cont’d) 

Variables Avg. Duration 
(minutes) Frequency 

Incident Nature 
Disabled Vehicle 22.47 1713 

Collision-Property 
Damage (CPD) 35.73 2662 

Collision-Personal Injury 
(CPI) 53.96 1971 

Collision-Fatality (CF) 208.66 84 
Others 50.25 335 

CHART 
Not Involved 34.77 898 

Involved 41.43 5867 
Pavement Condition 

Unspecified 56.61 469 
Dry 37.73 4864 
Wet 44.95 977 

Snow/Ice 44.61 447 
Chemical Wet 50.68 8 

Road Name 
I-895 28.93 137 
I-495 30.75 2051 
I-695 34.98 1252 
I-95 36.67 946 

US 50 36.89 510 
MD 295 38.43 239 

I-270 39.15 319 
I-97 44.18 118 

I-795 44.55 85 
I-370 54.21 2 
I-83 56.61 248 
I-70 69.88 191 

Others 72.41 597 
US 1 89.71 45 
I-68 182.88 25 
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Figure 3.4  Distribution of Incident Duration Frequency by Each Incident Nature 
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Chapter 4: Methodology and Analysis 

4.1 Introduction 

 This chapter explores several potential methods for developing an effective 

prediction model for the duration of incidents in Maryland. It begins with a discussion of 

the preliminary analyses with CART. Based on the findings from CART, this study has 

further developed a rule-based tree model (RBTM) in Section 4.3, along with its 

calibration procedures. All model structures, along with their performances and 

validations, are presented in Sections 4.4 to 4.8. Overall findings and conclusions are 

discussed in the last section. 

4.2 Preliminary Analysis with CART 

4.2.1 Basic Procedures of CART 

CART, also known as C&RT, is a type of decision tree technique which was 

introduced and popularized by Breiman et al. (1984). This nonparametric statistical 

method first determines a sequence of if-then logic conditions developed based on an 

analysis of the relationships between the dependent and independent variables. Based on 

the set of logic conditions, it builds a classification tree for categorical dependent 

variables, and a regression tree for continuous dependent variables. 

CART consists of four steps – tree building, stopping the tree building, pruning, 

and optimal tree selection. Using a learning data set, the optimal tree is built for the 

outcome and predictor variables. The test data set is required to validate the classification 

and decision rules.  
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In the tree-building step, the root node, including all data sets, is first split into 

two child nodes according to the best possible variable to split, called a splitter. The best 

splitter is used to maximize the average “purity” of the two child nodes. Among various 

available measures of purity, the most commonly used measure is the “Gini,” followed 

by “Twoing” (Lewis, 2000). After splitting, each node, including the root node, is 

assigned a predicted outcome category, based on a function shown below.  

Node is category i, if 
j

i

j

i

N
N

tNjjiC
tNiijC

>
)()()|(
)()()|(

π
π  for all values of j, 

where, C(j|i) is the cost of classifying i as j, 

π(i) is the prior probability of i, 

Ni is the number of category i in the data set, 

and Ni(t) is the number of category i in the node. 

Procedures of node splitting and assigning for a predicted category are repeated for each 

node until it is impossible to continue.  

 To stop building a tree, at least one of the following criteria should be satisfied:  

(1) Only one observation is left in each child node. 

(2) The distributions of predictor variables for all observations within each child 

node are identical, which makes further splitting impossible. 

(3) The maximum tree level, externally set by users, has been reached. 

Usually, a tree created by the aforementioned procedures is likely to be overfit. 

That may result in making it difficult for users to read and interpret, and so the process of 

tree pruning is recommended. To prune the overfit tree, generally the method of “cost 

complexity” is used. In this method, the complexity parameter, α, is gradually increased 

during the pruning process; α is the measure of how much additional accuracy is needed 
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to demand the additional complexity for the additional split (Lewis, 2000). As α 

increases, the tree gets simpler, with more nodes pruned. While pruning, the optimal tree 

is selected with the optimal value of α, so that the information in the training data set is 

well fit but not overfit (Lewis, 2000). Detailed discussions of CART are available in the 

literature (Breiman et al., 1984; Lewis, 2000; Yohannes and Hoddinott, 1999; Lemon et 

al., 2003). 

4.2.2 Results and Findings from CART 

 Table 4.1 presents three different ways for proceeding with the design of the 

classification tree. The results and findings, based on the optimal trees developed for each 

type of dependent variable are summarized below. 

1. Among 25 independent variables, the nature of the incident was selected as the 

first splitter to build a tree. The selected optimal trees show that incident durations 

for Collision-Property Damage and Disabled Vehicles were relatively short, since 

about 53 percent of these incidents had duration of between 5 and 20 minutes. On 

the other hand, incident durations for Collision-Personal Injury, Fatality, and 

Others were likely to be longer, because about 59 percent of these incidents 

distribute between 20 and 70 minutes. These relations are consistent with the 

frequency distribution of incident durations (see Figure 3.4 in Chapter 3).  
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Table 4.1  Summary of Dependent Variables Used for Design of the Classification Tree 

Type of  
Dependent 
Variable 

Number of 
Categories 

Definition 
(Ranges of duration  
for each category) 

Percentage (%)

Basic 9 

1: [5, 10] mins 
2: (10, 15] mins 
3: (15, 20] mins 
4: (20, 30] mins 
5: (30, 45] mins 
6: (45, 70] mins 
7: (70, 90] mins 
8: (90, 120] mins 

9: > 120 mins 

14 
15 
12 
18 
16 
12 
4 
3 
5 

Recategorized DV1 1 
(RCDV1) 3 

Short: [5, 20] mins 
Middle: (20, 70] mins 

Long: > 70 mins 

41 
47 
12 

Recategorized DV1 2 
(RCDV2) 4 

Short: [5, 20] mins 
Middle: (20, 70] mins 
Long: (70, 120] mins 

Very Long: > 120 mins 

41 
47 
7 
5 

    1 Dependent Variable 

2. Without the information for classification costs and prior probabilities, each node 

is assigned to a predicted outcome category which has the highest frequency (i.e., 

the highest probability).  

3. Based on the experimental results, the difference in tree performance between 

using the original independent variables and regrouped independent variables was 

trivial. Also, the CART algorithm itself has the ability to choose the most 

significant variable as the best splitter; it can also find the best regrouped 

categories within the selected variable.  

4. Tables 4.2 to 4.4 summarize the prediction result for each tree. Table 4.2 shows 

that the tree (Tree 1) developed for nine categorized (Basic) dependent variables 

had an overall percentage of correct predictions of 30.2 percent. About 71 percent 

of the incidents with durations of between five and ten minutes were predicted 
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correctly. But the tree at this level could not predict correctly for incidents having 

durations of 70 to 90 minutes and 90 to 120 minutes. Trees developed for three 

categorized (RCDV1) dependent variable and for four categorized (RCDV2) 

dependent variable (Tree 3) reflect the similar trend, but achieve better levels of 

performance, with overall percentages of correct prediction of 63.5 and 63.1 

percent for Tree 2 and Tree 3, respectively. Neither tree, however, would suffice 

for use in predicting incident durations exceeding 70 minutes. For example, Tree 

2 predicted 22.8 percent correctly for incidents lasting longer than 70 minutes. In 

Tree 3, incident durations of 70 to 120 minutes were not predicted correctly at all, 

and this tree correctly predicted only 31.1 percent of incidents lasting for more 

than two hours. 

Overall, CART performs quite well for short or middle ranges of incident duration, 

especially for those lasting between five and ten minutes. However, it does not provide 

satisfactory results for incidents of long duration (e.g., longer than one hour). Smith and 

Smith (2001) obtained similar results in their research, although their tree was developed 

to forecast the clearance time. The overall prediction accuracy of their classification tree 

was 58.47 percent, and they concluded that this accuracy level was not good enough for 

use in traffic incident management.  
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Table 4.2  Prediction Result of the Tree Developed for the 9-Categorized (Basic) Dependent Variable (Tree 1) 

Observed Predicted 

Incident Duration 
(mins) [5,10] (10,15] (15, 20] (20, 30] (30, 45] (45, 70] (70, 90] (90, 120] >120 Percent 

Correct 
[5, 10] 673 137 0 93 30 13 0 0 4 70.8% 
(10, 15] 446 331 6 140 48 22 0 0 5 33.2% 
(15, 20] 297 192 85 157 71 20 0 0 2 10.3% 
(20, 30] 352 165 60 449 161 50 0 0 5 36.2% 
(30, 45] 281 96 36 349 249 64 0 0 9 23.0% 
(45, 70] 171 51 18 297 153 107 0 0 27 13.0% 
(70, 90] 55 21 11 89 42 41 0 0 14 0.0% 
(90, 120] 35 13 2 50 40 33 0 0 27 0.0% 
>120 22 19 8 72 50 53 0 0 146 39.5% 
Overall Correct 
Percentage 34.5% 15.2% 3.3% 25.1% 12.5% 6.0% 0.0% 0.0% 3.5% 30.2% 

Table 4.3  Prediction Result of the Tree Developed for the 3-Categorized (RCDV1) Dependent Variable (Tree 2) 

Observed Predicted 

Incident Duration (mins) short: [5, 20] middle: (20, 70] long: > 70 Percent Correct 
short: [5, 20] 1998 761 13 72.1%
middle: (20, 70] 1000 2108 42 66.9%
long: > 70 138 513 192 22.8%
Overall Correct 
Percentage 46.4% 50.0% 3.7% 63.5%
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Table 4.4  Prediction Result of the Tree Developed for the 4-Categorized (RCDV2) Dependent Variable (Tree 3) 

Observed Predicted 

Incident Duration (mins) short: [5, 20] middle: (20, 70] long: (70, 120] very long: >120 Percent Correct 
short: [5, 20] 1985 777 0 10 71.6%
middle: (20, 70] 961 2168 0 21 68.8%
long: (70, 120] 92 354 0 27 0.0%
very long: >120 31 224 0 115 31.1%
Overall Correct 
Percentage 45.4% 52.1% 0.0% 2.6% 63.1%

 



 

 44

4.3 Procedures for a Rule-Based Tree Model (RBTM) 

 From the outcome of CART, it is clear that the incident nature is the most 

significant variable for classification of incident durations. Based on this finding, along 

with the other analysis results from CART discussed previously, this study has 

redesigned a classification tree, called a rule-based tree model (RBTM), using the 

following procedures. Note that incident durations, which were grouped into five-minute 

intervals, are used in this approach. 

Step 1: Set the regrouped incident nature as the first splitter. 

As discussed in Chapter 3 (see Table 3.2), incidents with Debris, Vehicle Fire, 

Police Activity, Emergency Road Work, and Off-Road Work do not show statistically 

significant differences in their durations. In addition, the number of records available for 

incidents with Police Activity, Emergency Road Work, and Off-Road Work is somewhat 

small for developing a separate model. Thus, the regrouped incident nature was 

considered as a more appropriate splitter than the original one. 

Step 2: Determine the next splitter for each node. 

This step generates a cross-tabulation table (Hill and Lewicki, 2005) to determine 

the next splitter for each node. That table can display the number of cases in each 

category defined by two or more specified variables. For each independent and dependent 

variable (e.g., incident durations), this step creates a cross-tabulation table, along with a 

bar chart to show the distribution of frequency for different categories of the independent 

variable potentially associated with the incident durations. Then, the independent variable 
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that exhibits the most different kind of distribution in different categories is selected as 

the next splitter. 

Step 3: Split the node based on the determined splitter in each category. 

The focus of this step is to convert each splitting node into If-then; Else-then 

statements; these statements will constitute the set of rules for determining the incident 

duration for the node. 

Step 4: Assign the predicted incident duration range for each split node. 

This step determines the best representative range of incident durations for each 

node. To achieve this requires first searching for an interval that is less than or equal to 

30 minutes and which covers at least 70 percent of all cases within a node. If no such 

interval exists within the node, then the shortest interval covering at least 60 percent of all 

cases within the node is assigned as the predicted incident duration for that node. 

Step 5: Repeat Steps 2 to 4 for all nodes until the predetermined criteria for stopping the 

tree growth are satisfied. 

When a node satisfies one of the following criteria, one can stop the tree at that 

node: 

1. No independent variable is available as a splitter. 

2. Only one observation is left in a node. 

  To evaluate the performance of rules for each node, this study adopted the 

concepts of support and confidence developed for Associate Rules (Hill and Lewicki, 

2005). The support for the rule refers to the number of cases satisfying the If-Then rule. 

The confidence of the rule is defined as the ratio of the number of cases satisfying the If-
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Then rule (i.e., the support) to the number of cases satisfying the If statement only. The 

indicator of confidence is conceptually the same as the conditional probability of the 

Then statement, given the If statement of the rule. 

 Based on the findings through the aforementioned model development procedure, 

it is clear that the second splitter is County, which is a spatial factor. After splitting the 

data set by County, one can repeat the same procedures to complete the RBTM for each 

County of each incident nature. Due to the constraints of samples, this study analyzed 

only the data from Montgomery County. Figure 4.1 shows the structure of the RBTM. 
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Figure 4.1  The Structure of Rule-Based Tree Models 
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4.4 The Rule-Based Tree Model for Incident Nature of Collision-Fatality (CF) 

4.4.1 The Tree Structure 

For those incidents resulting in Collision-Fatality (CF), their distributions over 

300 minutes are scattered over a wide range (300 to 1500 minutes) of durations, while the 

distribution in the range of 60 to 300 minutes is condensed and nearly symmetric (see 

Figure 4.2). Most cases lasting over 300 minutes occurred on roads which are out of 

scope for this study, and about 78 percent of those cases show a ratio of blocked lanes in 

the same direction greater than or equal to 0.5. This means that those incidents resulted in 

an extreme level of severity. In addition, about 68 percent of these occurred between 

midnight and 6 AM. One extreme case involved 73 vehicles, including five tractor-

trailers, and it resulted in the longest duration, 1501 minutes. Since these cases require 

special response and operational efforts, this study has excluded them from the model 

development.  

Figure 4.2  Distribution of Frequencies for Incidents resulting in CF 
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 The RBTM for fatality incidents consists of the following rules. Unlike the other 

incident natures, fatality incidents do not include County as the first splitter, due to the 

deficiency of sample size. Hereafter, “IncD” stands for incident duration in minutes. 

1st Level 

Rule 1: If Weekend, then Rule 2-a; Else Rule 2-b 

2nd Level 

Rule 2-a: If Pickup Van is not involved, then Rule 3-a; Else Rule 3-b 

Rule 2-b: If Tractor-Trailer is not involved, then Rule 3-c; Else Rule 3-d 

At this level, heavy vehicles — such as pickup vans, single-unit trucks and 

tractor-trailers — had a noticeably strong effect on the resulting durations of incidents 

involving fatalities. 

3rd Level 

Rule 3-a: If Shoulder is not blocked, then 180<IncD <=200; Else Rule 4-a 

Rule 3-b: If Shoulder is not blocked, then 180<IncD <=200; Else 160<IncD <=180 

Rule 3-c: If occurs during Off-Peak Hours, then Rule 4-b; Else Rule 4-c 

Rule 3-d: If No. of vehicles involved < 4, then Rule 4-d; Else 260<IncD <=300 

This level, as well as the following levels, captures the effect of shoulder 

blockage on the durations of incidents that involve fatalities. When a shoulder lane was 

blocked, the incident duration was likely to be shorter than without such a blockage, and 

this is not consistent with the average incident duration classified by shoulder blockage 

presented in Chapter 3 (see Table 3.3(b)). This may be attributed to the fact that a 
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shoulder lane blockage generally provides a wider working space for the incident 

response units to better perform the necessary tasks.  

4th Level 

Rule 4-a: If occurs in the Daytime, then Rule 5-a; Else 160<IncD <=180 

Rule 4-b: If Pickup Van is not involved, then Rule 5-b; Else Rule 5-c 

Rule 4-c: If No. of vehicles involved = 1, then Rule 5-d; Else Rule 5-e 

Rule 4-d: If No. of blocked lanes in the same direction <= 1, then Rule 5-f 

 ; Else Rule 5-g 

5th Level 

Rule 5-a: If Ratio of blocked lanes in the same direction<=0.5, then 260<IncD <=280 

 ; Else 80<IncD <=100 

Rule 5-b: If Shoulder is not blocked, then Rule 6-a; Else Rule 6-b 

Rule 5-c: If Shoulder is not blocked, then Rule 6-c; Else Rule 6-d 

Rule 5-d: If Road is I-695, I-95, MD 50 or I-97, then 80<IncD <=140 

  ; Else if Road is I-795, I-83, I-70, I-370, US 1 or others, then 140<IncD <=160 

Rule 5-e: If No. of lanes in the same direction = 2, then 60<IncD <=80 

 ; Else Rule 6-e 

Rule 5-f: If occurs in the Daytime, then 180<IncD <=240; Else 240<IncD <=300 

Rule 5-g: If Ratio of blocked lanes in the same direction <=0.5, then Rule 6-f 

 ; Else Rule 6-g 

At this level, a noticeable relation was found to exist between Road (i.e., the 

highway segment) and incident durations.  
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6th Level 

Rule 6-a: If No. of blocked lanes in the same direction <=2, then Rule 7-a 

 ; Else 55<IncD <=80 

Rule 6-b: If Pavement is wet, then Rule 7-b; Else Rule 7-c 

Rule 6-c: If occurs in the Daytime, then 220<IncD <=240; Else 280<IncD <=300 

Rule 6-d: If occurs in the Daytime, then 120<IncD <=180; Else 160<IncD <=200 

Rule 6-e: If Pickup Van is not involved, then Rule 7-d; Else 180<IncD <=200 

Rule 6-f: If Shoulder is not blocked, then 240<IncD <=260; Else Rule 7-e 

Rule 6-g: If occurs in the Daytime, then Rule 7-f; Else 140<IncD <=160 

At this level, clearly, the duration of fatality-related incidents occurring in the 

daytime was likely to be shorter than those at night. One may attribute this outcome to 

the fact that the number of response units available at night is less than during the 

daytime. 

7th Level 

Rule 7-a: If occurs in the Daytime, then Rule 8-a; Else Rule 8-b 

Rule 7-b: If occurs in the Daytime, then 60<IncD <=120; Else 140<IncD <=160 

Rule 7-c: If Ratio of blocked lanes in the same direction <= 0.5, 

 then 160<IncD <=180; Else 100<IncD <=160 

Rule 7-d: If Ratio of blocked lanes in the same direction <= 0.5, 

 then 220<IncD <=260; Else 180<IncD <=200 

Rule 7-e: If Single-Unit Truck is not involved, then 60<IncD <=180 

 ; Else 200<IncD <=220 

Rule 7-f: If Ratio of blocked lanes in the same direction <=0.75, 



 

 52

 then 180<IncD <=200; Else 80<IncD <=140 

At this level, one can observe that, as the number of lanes blocked in the same 

direction increased, the incident duration generally decreased. This can be explained by 

the fact that more blocked lanes during operations may provide a wider working space for 

incident response units to efficiently clear an incident. 

8th Level 

Rule 8-a: If No. of vehicles involved=1, then 120<IncD <=140 

 ; Else 180<IncD <=200 

Rule 8-b: If Pavement is wet, then 140<IncD <=160; Else 180<IncD <=260 

One interesting result seen at this level is about the pavement conditions. In 

general, the wet pavement condition reflects inclement weather, which tends to increase 

the number of incidents and incident durations. However, in the study data set for CF, the 

relationship between wet pavement and incident duration was opposite to what was 

expected. This data set shows that incident durations in the wet pavement condition were 

likely to be shorter than those in the non-wet pavement condition, and this observation is 

consistent with the results in Table 4.5, Average Fatality Incident Durations for Different 

Pavement Conditions. This can be explained by the fact that, in inclement weather, 

incident response units are on alert and more staff is available for emergency medical 

services (EMS). 
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Table 4.5  Average Fatality Incident Durations for Different Pavement Conditions 

Pavement 
Condition 

Avg. Incident 
Duration (mins) 

Standard Deviation 
of Incident Duration Frequency 

Unspecific 184.70 82.43 8 
Dry 173.00 57.65 52 
Wet 127.66 40.67 14 

Snow/Ice 173.03 N/A 1 
Chemical Wet N/A N/A N/A 

4.4.2 Performance and Validation Results  

Tables 4.6 and 4.6(a) summarize the estimation results of RBTMs using the data 

set collected from years 2003 to 2005.  

While most samples for other incident natures are distributed within two hours 

(i.e., 5 to 120 minutes), samples for CF are scattered between 60 and 300 minutes. In 

addition, the sample size was very small (i.e., 84), although such incidents had been 

collected for three years. Thus, the ranges of incident durations assigned at many of the 

terminal nodes (highlighted cells) in RBTMs (Then statement in rules) are likely to be 

wider (e.g., about 60 minutes) than those for other incident natures (e.g., about 25 

minutes in Collision-Personal Injury). Although the predicted incident durations fell in a 

relatively wide range, the confidences for most of the rules are acceptable.  
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Table 4.6  Summary of Estimation Results for the RBTM for CF Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 

(%) Support Total 
Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 (80, 200] 93.75 15 16 (60, 200] 71.19 42 59 

2 Rule 2-a (160, 200] 60.00 6 10 (80, 180] 100.00 6 6 

3 Rule 2-b (100, 200] 75.00 30 40 (180, 300] 63.16 12 19 

4 Rule 3-a (180, 200] 100.00 2 2 (80, 180] 87.50 7 8 

5 Rule 3-b (180, 200] 100.00 1 1 (160, 180] 80.00 4 5 

6 Rule 3-c (100, 240] 78.57 22 28 (120, 260] 75.00 9 12 

7 Rule 3-d (80, 260] 88.24 15 17 (260, 300] 100.00 2 2 

8 Rule 4-a (80, 100] 66.67 2 3 (160, 180] 80.00 4 5 

9 Rule 4-b (100. 200] 78.68 14 19 (120, 240] 88.89 8 9 

10 Rule 4-c (80, 160] 100.00 5 5 (180, 260] 85.71 6 7 

11 Rule 4-d (220, 300] 66.67 4 6 (80, 200] 72.73 8 11 

12 Rule 5-a (260, 280] 100.00 1 1 (80, 100] 100.00 2 2 

13 Rule 5-b (120, 200] 62.50 5 8 (100, 180] 81.82 9 11 

14 Rule 5-c (220, 240] 66.67 2 3 (120, 180] 83.33 5 6 

15 Rule 5-d (80, 140] 100.00 3 3 (140, 160] 100.00 2 2 

16 Rule 5-e (60, 80] 100.00 1 1 (180, 160] 100.00 6 6 

17 Rule 5-f (180, 240] 100.00 3 3 (240, 300] 100.00 3 3 

18 Rule 5-g (160, 260] 75.00 3 4 (80, 200] 100.00 7 7 

19 Rule 6-a (120, 160] 100.00 6 6 (55, 80] 100.00 2 2 

20 Rule 6-b (60, 160] 100.00 4 4 (100, 180] 100.00 7 7 

21 Rule 6-c (220, 240] 100.00 2 2 (280, 300] 100.00 1 1 

22 Rule 6-d (120, 180] 100.00 4 4 (160, 200] 100.00 2 2 

23 Rule 6-e (220, 260] 80.00 4 5 (180, 200] 100.00 1 1 

24 Rule 6-f (240, 260] 100.00 1 1 (60, 220] 100.00 3 3 

25 Rule 6-g (80, 140] 66.67 4 6 (140, 160] 100.00 1 1 

26 Rule 7-a (120, 240] 88.89 8 9 (140, 200] 66.67 2 3 

27 Rule 7-b (60, 120] 100.00 3 3 (140, 160] 100.00 1 1 

28 Rule 7-c (160, 180] 100.00 2 2 (100, 160] 100.00 5 5 

29 Rule 7-d (220, 260] 100.00 4 4 (180, 200] 100.00 1 1 

30 Rule 7-e (60, 180] 100.00 2 2 (200, 220] 100.00 1 1 

31 Rule 7-f (180, 200] 100.00 1 1 (80, 140] 80.00 4 5 
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Table 4.6(a)  Summary of Estimation Results for the RBTM for CF Incidents Occurring in 
Montgomery County (cont’d) 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

32 Rule 8-a (120, 140] 100.00 2 2 (180, 200] 100.00 1 1 

33 Rule 8-b (140, 160] 100.00 1 1 (180, 260] 100.00 2 2 
Note:  1. Sample size is 75.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 

However, the overall validation results shown in Tables 4.7 and 4.7(a), using a 

data set collected in year 2006 (sample size is 70), indicate that only two nodes show a 

confidence over 70 percent. Many validation results of the nodes that appear close to 

terminal nodes show a low confidence. Some of the terminal nodes (highlighted cells) 

cannot be validated, since no records in the validation data set satisfy If conditions given 

in those nodes. Models for CF show unsatisfactory performance, even with the larger 

data set for model development. Hence, exploring some supplemental models and 

additional explanatory variables (e.g., the number of fatalities, severity of injuries, or 

driver condition) seem essential for further capturing the relations between incident 

duration and incidents involving fatalities.  

The supplemental models for incidents resulting in fatality are discussed in detail 

in Chapter 5. 
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Table 4.7  Summary of Validation Results for the RBTM for CF Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 (80, 200] 60.00 12 20 (60, 200] 56.00 28 50 

2 Rule 2-a (160, 200] 29.41 5 17 (80, 180] 0.00 0 4 

3 Rule 2-b (100, 200] 42.50 17 40 (180, 300] 80.00 8 10 

4 Rule 3-a (180, 200] 33.33 1 3 (80, 180] 64.29 9 14 

5 Rule 3-b (180, 200] 0.00 0 2 (160, 180] 0.00 0 2 

6 Rule 3-c (100, 240] 54.84 17 31 (120, 260] 66.67 6 9 

7 Rule 3-d (80, 260] 66.67 6 9 (260, 300] 50.00 1 2 

8 Rule 4-a (80, 100] 0.00 0 6 (160, 180] 10.00 1 10 

9 Rule 4-b (100. 200] 50.00 13 26 (120, 240] 60.00 3 5 

10 Rule 4-c (80, 160] 25.00 1 4 (180, 260] 60.00 3 5 

11 Rule 4-d (220, 300] 66.67 4 6 (80, 200] 42.86 3 7 

12 Rule 5-a (260, 280] 0.00 0 2 (80, 100] 0.00 0 4 

13 Rule 5-b (120, 200] 40.00 4 10 (100, 180] 50.00 8 16 

14 Rule 5-c (220, 240] 0.00 0 2 (120, 180] 66.67 2 3 

15 Rule 5-d (80, 140] 50.00 1 2 (140, 160] 0.00 0 2 

16 Rule 5-e (60, 80] 0.00 0 3 (180, 160] 0.00 0 2 

17 Rule 5-f (180, 240] 100.00 1 1 (240, 300] 0.00 1 0 

18 Rule 5-g (160, 260] 0.00 0 1 (80, 200] 50.00 3 6 

19 Rule 6-a (120, 160] 40.00 4 10 (55, 80] N/A N/A 0 

20 Rule 6-b (60, 160] 0.00 0 1 (100, 180] 53.33 8 15 

21 Rule 6-c (220, 240] 0.00 0 1 (280, 300] 0.00 0 1 

22 Rule 6-d (120, 180] N/A N/A 0 (160, 200] 0.00 0 3 

23 Rule 6-e (220, 260] N/A N/A 0 (180, 200] 0.00 0 2 

24 Rule 6-f (240, 260] N/A N/A 0 (60, 220] 0.00 0 1 

25 Rule 6-g (80, 140] 50.00 1 2 (140, 160] 25.00 1 4 

26 Rule 7-a (120, 240] 75.00 3 4 (140, 200] 16.67 1 6 

27 Rule 7-b (60, 120] 0.00 0 1 (140, 160] N/A N/A 0 

28 Rule 7-c (160, 180] 0.00 0 4 (100, 160] 0.00 0 11 

29 Rule 7-d (220, 260] N/A N/A 0 (180, 200] N/A N/A 0 

30 Rule 7-e (60, 180] 0.00 0 1 (200, 220] N/A N/A 0 

31 Rule 7-f (180, 200] N/A N/A 0 (80, 140] 0.00 0 2 
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Table 4.7(a)  Summary of Validation Results for the RBTM for CF Incidents Occurring in 
Montgomery County (cont’d) 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

32 Rule 8-a (120, 140] 50.00 1 2 (180, 200] 0.00 0 2 

33 Rule 8-b (140, 160] 100.00 1 1 (180, 260] 0.00 0 5 
Note:  1. Sample size is 64.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 

4.5 The RBTM for Incident Nature of Collision - Personal Injury (CPI)  

4.5.1 The Tree Structure 

 The following rules construct the RBTM for incidents causing personal injuries, 

based on the data from Montgomery County.  

1st Level 

Rule 1: If Total no. of blocked lanes <=2, then Rule 2-a; Else Rule 2-b 

2nd Level 

Rule 2-a: If No. of blocked lanes in the opposite direction=0, then Rule 3-a 

 ; Else Rule 3-b 

Rule 2-b: If Total no. of blocked lanes = 3, then Rule 3-c; Else Rule 3-d 

At the first and second levels, the number of blocked lanes is selected as a 

significant factor. 

3rd Level 

Rule 3-a: If Single-Unit Truck is not involved, then Rule 4-a; Else Rule 4-b 

Rule 3-b: If No. of blocked lanes in the opposite direction=1, then Rule 4-c 

 ; Else 10< IncD <=35 
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Rule 3-c: If No. of Tractor-Trailer=0, then Rule 4-d 

 ; Else if No. of Tractor-Trailer=1, then Rule 4-e 

 ; Else if No. of Tractor-Trailer>=2, then 75< IncD <=100 

Rule 3-d: If Pickup Van is not involved, then 5<=IncD <=45; Else 30< IncD <=70 

At the third level, involvement of heavy vehicles (i.e., single-unit trucks, pickup 

vans, and tractor-trailers) showed a strong relation to incident duration. 

4th Level 

Rule 4-a: If Pickup Van is not involved, then Rule 5-a; Else Rule 5-b 

Rule 4-b: If No. of Single-Unit Trucks=1, then Rule 5-c; Else Rule 5-d 

Rule 4-c: If Road is I-495, then 10< IncD <=30; Else 20 < IncD <=40 

Rule 4-d: If Road is I-495, then Rule 5-e; Else 5<= IncD <=45 

Rule 4-e: If Shoulder is blocked, then 15< IncD <=35 

 ; Else if occurs in the Daytime 15< IncD <=40 

At this level, the durations of incidents occurring on I-495 fell into a different 

range than those on other roads.  

5th Level 

Rule 5-a: If Tractor-Trailer is not involved, then Rule 6-a; Else Rule 6-b 

Rule 5-b: If No. of Pickup Van =1, then Rule 6-c 

 ; Else if No. of Pickup Van =2, then Rule 6-d 

 ; Else 15 <IncD<=35 

Rule 5-c: If Pickup Van is not involved, then Rule 6-e; Else 25 <IncD<=50 

Ruel 5-d: If Pickup Van is not involved, then 35 <IncD<=40 

 ;Else 185 <IncD<=190 
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Rule 5-e: If Pavement is not wet, then 15< IncD <=45 

 ; Else Rule 6-f 

Overall, this level selects the information regarding pickup van involvement as a 

key splitter.  

6th Level 

Rule 6-a: If No. of Vehicles involved=1, then Rule 7-a; Else Rule 7-b 

Rule 6-b: If Pavement is dry, then Rule 7-c; Else 15<IncD<=25 

Rule 6-c: If Total no. of lanes blocked=0, then Rule 7-d 

 ; Else if Total no. of lanes blocked=1, then Rule 7-e 

 ; Else Rule 7-f 

Rule 6-d: If Road= I-270 N, then 40 <IncD<=65  

 ; Else if Road= I-270 S, then 25 <IncD<=40  

 ; Else if Road= I-495, then Rule 7-g 

Rule 6-e: If occurs during Off-Peak Hours, then 25 <IncD<=45  

 ; Else 30 <IncD<=50 

Rule 6-f: If Pickup van is not involved, then 5<= IncD <=35; Else 20<IncD<= 50 

7th Level 

Rule 7-a: If occurs during Off-Peak Hours, then Rule 8-a; Else Rule 8-b 

Rule 7-b: If No. of Vehicles involved=2, then Rule 8-c 

 ; Else if No. of Vehicles involved =3, then Rule 8-d 

 ; Else 20<IncD<=40 

Rule 7-c: If No. of Vehicles involved <=2, then 5<=IncD<=25; Else 15<IncD<=40 

Rule 7-d: If Shoulder is not blocked, then Rule 8-e; Else Rule 8-f 
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Rule 7-e: If Shoulder is not blocked, then 15 <IncD<=40; Else 10 <IncD<=45  

Rule 7-f: If occurs during Off-Peak Hours, then Rule 8-g; Else 15 <IncD<=35 

Rule 7-g: If Tractor-Trailer is not involved, then 10 <IncD<=30 

 ; Else 2 hours <IncD<=3.5 hours  

At this level, as the number of vehicles involved with an incident increased, the 

incident duration was likely to increase. 

8th Level 

Rule 8-a: If Pavement is dry, then Rule 9-a 

 ; Else if Pavement is wet, then 10<IncD<=30 

 ; Else if Pavement is snow/ice, then 40<IncD<=55  

Rule 8-b: If Pavement is dry, then 10<IncD<=25; Else 15<IncD<=35 

Rule 8-c: If Weekend, then 15<IncD<=30  

 ; Else Rule 9-b 

Rule 8-d: If Road is I-495, then Rule 9-c; Else Rule 9-d 

Rule 8-e: If occurs during Off-Peak Hours, then 40 <IncD<=65 

 ; Else 5 <=IncD<=25  

Rule 8-f: If occurs during Off-Peak Hours, then 5 <=IncD<=25  

 ; Else 25 <IncD<=45  

Rule 8-g: If Pavement is dry, then 15 <IncD<=45 ; Else 25 <IncD<=45  

At this level, one can observe that incidents occurring in dry pavement conditions 

were likely to be shorter than those in other conditions, as expected. Also noticeable is 

the effect of Off-Peak Hours on incident duration differs within the subsets. For example, 



 

 61

in Rule 8-e, incidents occurring during off-peak hours resulted in shorter durations, while 

in Rule 8-f, they resulted in longer durations.  

9th Level 

Rule 9-a: If Shoulder is not blocked, then Rule 10-a; Else Rule 10-b 

Rule 9-b: If Pavement is dry, then Rule 10-c; Else Rule 10-d 

Rule 9-c: If Shoulder is not blocked, then 45<IncD<=60; Else 35<IncD<=55 

Rule 9-d: If Ratio of blocked lanes in the same direction < 0.5, then 15<IncD<=40 

  ; Else 5<=IncD<=15 

Note that, at this level, information regarding a lane blockage, including shoulder 

lanes, became a significant factor in determining incident durations. 

10th Level 

Rule 10-a: If Number of Lanes=4, then 5 <IncD <= 20; Else 35<IncD<=50 

Rule 10-b: If Road is I-270, then 20<IncD<=30, 

 ; Else if Road is I-495, then 10<IncD<=35 

Rule 10-c: If occurs during Off-Peak Hours, then 5<=IncD<=30; Else 10<IncD<=35 

Rule 10-d: If occurs during Off-Peak Hours, then 15<IncD<=40; Else 10<IncD<=35 

At this level, the Peak Hour factor shows a different degree of influence in 

different subsets. With Rule 10-c, the duration of incidents occurring during peak hours 

was likely to be longer than that during off-peak hours, and vice versa with Rule 10-d. 

To complete the RBTM for incidents caused by collisions with personal injury, 

this study has built the tree up to the tenth level. This reflects the complexity of 

predicting the durations of various types of incidents.  
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4.5.2 Performance and Validation Results  

 As shown in Tables 4.8 and 4.8(a), the overall performance results for this model 

are quite satisfactory, even with the validation data set. 

 However, with Rules 3-d and 4-d, the predicted range of incident durations was 

over 30 minutes, with unsatisfactory confidences, which are lower than 70 percent. 

Therefore, a supplemental model was needed. Due to the limited sample size, the 

supplemental model has been developed with the sub-data set that was used for 

developing Rule 2-b. Similarly, rules for 6-b, 8-c, 8-d, 10-a, and 10-b demonstrate a low 

confidence, i.e., a wide range of predicted incident duration. Thus, the sub-data set 

including all these cases (i.e., a subset for Rule 5-a) was used to develop a separate 

supplemental model.  

 Lastly, another supplemental model has been developed using a subset satisfying 

Rule 5-b, since this subset includes rules with unsatisfactory results, such as Rules 7-e, 7-

g, and 8-g. 
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Table 4.8  Summary of Estimation Results for the RBTM for CPI Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 (10, 50] 83.17 257 309 [5, 45] 65.30 64 98 

2 Rule 2-a [5, 50] 88.00 257 292 (10, 40] 94.10 16 17 

3 Rule 2-b [5, 45] 66.67 40 60 [5, 45] 63.16 24 38 

4 Rule 3-a (10, 50] 81.92 222 271 (25, 50] 80.95 17 21 

5 Rule 3-b (10, 30] 84.61 11 13 (10,35] 75.00 3 4 

6 Rule 3-c (15, 45] 60.00 30 50 
(15 ,40] 71.40 5 7 
(75,100] 100.00 3 3 

7 Rule 3-d [5, 45] 72.22 13 18 (30,70] 60.00 12 20 

8 Rule 4-a [5, 50] 89.00 168 189 (10 ,45] 76.83 63 82 

9 Rule 4-b (25, 50] 84.21 16 19 N/A N/A N/A 2 

10 Rule 4-c (10, 30] 100.00 9 9 (20,40] 100.00 4 4 

11 Rule 4-d (15, 45] 67.87 19 28 [5,45] 63.64 14 22 

12 Rule 4-e (15, 35] 80.00 4 5 (15,40] 83.30 5 6 

13 Rule 5-a [5, 40] 77.53 138 178 [5, 25] 63.64 7 11 

14 Rule 5-b [5, 40] 74.07 40 54 (15, 50] 68.18 15 22 
(15 ,35] 66.70 4 6 

15 Rule 5-c (25, 45] 69.23 9 13 (25 ,50] 100.00 6 6 

16 Rule 5-d (35 ,40] 100.00 1 1 (185 ,190] 100.00 1 1 

17 Rule 5-e (15,45] 75.00 6 8 (20, 40] 70.00 14 20 

18 Rule 6-a [5, 35] 70.91 39 55 (10,40] 77.20 44 57 

19 Rule 6-b [5, 25] 62.50 5 8 (15, 25]  66.67 2 3 

20 Rule 6-c [5, 45] 88.24 15 17 (10, 40] 81.25 13 16 
(15, 45] 80.95 17 21 

21 Rule 6-d (40 ,65] 80.00 4 5 (25 ,40] 80.00 4 5 
(10, 50] 83.33 10 12 

22 Rule 6-e (25 ,45] 87.50 7 8 (30 ,50] 60.00 3 5 

23 Rule 6-f [5, 35] 91.67 11 12 (20, 50] 75.00 6 8 

24 Rule 7-a [5, 40] 70.45 31 44 (10, 25] 72.73 8 11 

25 Rule 7-b [5, 40] 83.75 67 80 
(10, 50] 76.00 19 25 

(20, 40] 83.30 10 12 

26 Rule 7-c [5, 25] 80.00 4 5 (15, 40] 100.00 3 3 

27 Rule 7-d [5, 45] 81.82 9 11 (20, 45] 66.67 4 6 

28 Rule 7-e (15 ,40] 100.00 8 8 (10, 45] 87.50 7 8 
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Table 4.8(a)  Summary of Estimation Results for the RBTM for CPI Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

29 Rule 7-f (15, 45] 73.33 11 15 (15, 35] 83.33 5 6 

30 Rule 7-g (10 ,30] 80.00 8 10 2 ~ 3.5 hrs 100.00 2 2 

31 Rule 8-a (20, 50] 73.33 22 30 
(10, 30] 80.00 8 10 
(40, 55] 100.00 3 3 

32 Rule 8-b (10,25] 83.30 5 6 (15, 35] 80.00 4 5 

33 Rule 8-c (15, 30] 100.00 1 1 [5 , 40] 83.54 66 79 

34 Rule 8-d (35, 60] 63.64 7 11 (10, 40] 71.43 10 14 

35 Rule 8-e (40 ,65] 75.00 3 4 [5 , 25] 85.71 6 7 

36 Rule 8-f [5 ,25] 100.00 3 3 (25 ,45] 75.00 3 4 

37 Rule 8-g (15 ,45] 70.00 7 10 (25 ,45] 80.00 4 5 

38 Rule 9-a [5, 50] 100.00 13 13 (10, 35] 70.59 12 17 

39 Rule 9-b (10, 35] 71.67 43 60 [5, 30] 68.42 13 19 

40 Rule 9-c (45, 60] 75.00 3 4 (35, 55] 57.14 4 7 

41 Rule 9-d (15, 40] 72.73 8 11 [5, 15] 66.67 2 3 

42 Rule 10-a [5, 20] 63.60 7 11 (35, 50] 100.00 2 2 

43 Rule 10-b (20,30] 100.00 4 4 
(10, 35] 66.67 8 12 

(10, 35] 70.59 12 17 

44 Rule 10-c (15, 40] 73.68 14 19 (10, 35] 73.17 30 41 

45 Rule 10-d [5, 30] 70.00 7 10 (10, 35] 77.78 7 9 
Note:  1. Sample size is 407.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 
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Table 4.9  Summary of Validation Results for the RBTM for CPI Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 (10, 50] 71.97 113 157   [5, 45] 57.14 20 35  

2 Rule 2-a [5, 50] 75.82 116 153  (10, 40] 75.00 3 4 

3 Rule 2-b [5, 45] 51.85 14 27 [5, 45] 75.00 6 8 

4 Rule 3-a (10, 50] 72.54 103 142 (25, 50] 36.36 4 11 

5 Rule 3-b (10, 30] 33.33 1 3 (10,35] 100.00 1 1 

6 Rule 3-c (15, 45] 52.00 13 25 
(15 ,40] N/A 0 0 
(75,100] 0.00 0 2 

7 Rule 3-d [5, 45] 50.00 2 4 (30,70] 25.00 1 4 

8 Rule 4-a [5, 50] 65.09 69 106 (10 ,45] 75.00 27 36 

9 Rule 4-b (25, 50] 57.14 4 7 N/A N/A N/A 4 

10 Rule 4-c (10, 30] 33.33 1 3 (20,40] N/A 0 0 

11 Rule 4-d (15, 45] 60.00 9 15 [5,45] 40.00 4 10 

12 Rule 4-e (15, 35] N/A 0 0 (15,40] N/A 0 0 

13 Rule 5-a [5, 40] 71.11 64 90 [5, 25] 25.00 4 16 

14 Rule 5-b [5, 40] 76.00 19 25 (15, 50] 50.00 4 8 
(15 ,35] 0.00 0 3 

15 Rule 5-c (25, 45] 42.86 3 7 (25 ,50] N/A 0 0 

16 Rule 5-d (35 ,40] 0.00 0 0 (185 ,190] N/A 0 0 

17 Rule 5-e (15,45] 100.00 3 3 (20, 40] 41.67 5 12 

18 Rule 6-a [5, 35] 68.00 17 25 (10,40] 64.62 42 65  

19 Rule 6-b [5, 25] 30.77 4 13 (15, 25]  N/A 0 0 

20 Rule 6-c [5, 45] 33.33 1 3 (10, 40] 100.00 3 3 
(15, 45] 50.00 1 2 

21 Rule 6-d (40 ,65] N/A 0 0 (25 ,40] 50.00 1 2 
(10, 50] 66.67 4 6 

22 Rule 6-e (25 ,45] 25.00 1 4 (30 ,50] 100.00 3 3 

23 Rule 6-f [5, 35] 33.33 2 6 (20, 50] 50.00 3 6 

24 Rule 7-a [5, 40] 64.71 11 17 (10, 25] 12.50 1 8 

25 Rule 7-b [5, 40] 68.09 32 47 
(10, 50] 80.00 8 10 

(20, 40] 37.50 3 8 

26 Rule 7-c [5, 25] 80.00 4 5 (15, 40] 0.00 0 4 

27 Rule 7-d [5, 45] 0.00 0 2 (20, 45] 100.00 1 1 

28 Rule 7-e (15 ,40] 33.33 1 3 (10, 45] 60.00 3 5 
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Table 4.9(a)  Summary of Validation Results for the RBTM for CPI Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

29 Rule 7-f (15, 45] 50.00 1 2 (15, 35] 100.00 4 4 

30 Rule 7-g (10 ,30] 80.00 4 5 2 ~ 3.5 hrs 0.00 0 5 

31 Rule 8-a (20, 50] 53.33 8 15 
(10, 30] 0.00 0 2 
(40, 55] N/A 0 0 

32 Rule 8-b (10,25] 0.00 0 2 (15, 35] N/A 0 0 

33 Rule 8-c (15, 30] 0.00 0 3 [5 , 40] 72.73 32 44 

34 Rule 8-d (35, 60] 18.52 5 27 (10, 40] 71.43 10 14 

35 Rule 8-e (40 ,65] 100.00 2 2 [5 , 25] N/A 0 0 

36 Rule 8-f [5 ,25] 0.00 0 1 (25 ,45] 100.00 1 1 

37 Rule 8-g (15 ,45] 71.43 5 7 (25 ,45] 0.00 0 2 

38 Rule 9-a [5, 50] 75.00 3 4 (10, 35] 45.45 5 11 

39 Rule 9-b (10, 35] 62.16 23 37 [5, 30] 71.43 5 7 

40 Rule 9-c (45, 60] 0.00 0 2 (35, 55] 66.67 2 3 

41 Rule 9-d (15, 40] 100.00 3 3 [5, 15] 50.00 1 2 

42 Rule 10-a [5, 20] 50.00 2 4 (35, 50] N/A 0 0 

43 Rule 10-b (20,30] 14.29 1 7 
(10, 35] 100 4 4 

(10,35] 72.73 8 11 

44 Rule 10-c (15, 40] 58.82 10 17 (10, 35] 60.00 12 20 

45 Rule 10-d [5, 30] 50.00 1 2 (10, 35] 60.00 3 5 

Note:  1. Sample size is 192.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 
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4.6 The RBTM for Incident Nature of Collision - Property Damage (CPD) 

4.6.1 The Tree Structure 

 The rules constituting the RBTM for incidents with property damage in 

Montgomery County are summarized below.  

1st Level 

Rule 1: If Tractor-Trailer is not involved, then Rule 2-a; Else Rule 2-b 

Tractor-trailer involvement is selected as the first splitter for incidents causing 

property damage, since it emerges as a factor that can clearly divide the available samples 

into distinctly different distributions.  

2nd Level 

Rule 2-a: If Pickup Van is not involved, then Rule 3-a; Else Rule 3-b 

Rule 2-b: If No. of Tractor-Trailer =1, then 5<= IncD <=30 

  ; Else if No. of Tractor-Trailer =2, then Rule 3-c 

  ; Else No. of Tractor-Trailer >=3, then 90< IncD <=200 

At this level, additional information regarding heavy vehicle involvement plays a 

key role in determining the resulting incident durations. 

3rd Level 

Rule 3-a: If Shoulder is not involved, then Rule 4-a; Else Rule 4-b 

Rule 3-b: If No. of Pickup Van =1, then Rule 4-c; Else Rule 4-d 

Rule 3-c: If Road is I-495, then 5<= IncD <=110 

 ; Else if Road is I-270, then 60< IncD <=240 
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 ; Else Road is Others, then 40< IncD <=60 

4th Level 

Rule 4-a: If Road is I-495, then Rule 5-a; Else if Road is I-270, then Rule 5-b 

  ; Else Road is Others, then Rule 5-c 

Rule 4-b: If Road is I-495, then 5<= IncD <=30 

 ; Else if Road is I-270, then Rule 5-d 

 ; Else Road is Others, then Rule 5-e 

Rule 4-c: If Shoulder is not blocked, then Rule 5-f; Else Rule 5-g 

Rule 4-d: If Shoulder is not blocked, then Rule 5-h; Else Rule 5-i 

 The variable of Road or Shoulder Blockage is used as the next splitter. 

5th Level 

Rule 5-a: If occurs during Off-Peak Hours, then Rule 6-a; Else 6-b 

Rule 5-b: If occurs during Off-Peak Hours, then Rule 6-c; Else 6-d 

Rule 5-c: If Pavement is dry, then 5<=IncD <=20; Else 60 <IncD <=85 

Rule 5-d: If Pavement is dry, then Rule 6-e; Else if Pavement is wet, then Rule 6-f 

  ; Else if Pavement is snow/ice, then Rule 6-g 

  ; Else 120 <IncD <=180 

Rule 5-e: If Ratio of total lanes blocked <0.5, then 5 <=IncD <=20 

 ; Else 120 <IncD <=180 

Rule 5-f: If No. of vehicles involved =1, then 5 <=IncD <=15 

  ; Else if No. of vehicles involved =2, then 5 <=IncD <=20 

  ; Else Rule 6-h 

Rule 5-g: If No. of total lanes blocked =0, then Rule 6-i 
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  ; Else if No. of total lanes blocked =1, then Rule 6-j 

  ; Else Rule 6-k 

Rule 5-h: If Ratio of blocked lanes in the same direction <0.5, then Rule 6-l 

 ; Else Rule 6-m 

Rule 5-i: If Road is I-495 IL, then Rule 6-n 

 ; Else if Road is I-495 OL, then 5 <=IncD <=20 

 ; Else Rule 6-o 

The 5th level shows that the duration of incidents was likely to be shorter in dry 

pavement conditions than in other pavement conditions. 

6th Level 

Rule 6-a: If Pavement is dry, then Rule 7-a; Else Rule 7-b 

Rule 6-b: If Single-Unit Truck is not involved, then Rule 7-c; Else 25 <IncD <=40 

Rule 6-c: If Pavement is dry, then Rule 7-d; Else Rule 7-e 

Rule 6-d: If Pavement is dry, then 5 <=IncD <=30 

  ; Else if Pavement is wet, then 5 <=IncD <=20 

  ; Else if Pavement is snow/ice, then 90 <IncD <=150 

  ; Else 5 <=IncD <=15 

Rule 6-e: If No. of vehicles involved <=1, then 5 <=IncD <=30 

  ; Else if No. of vehicles involved is 2 or 3, then 5 <=IncD <=30 

  ; Else No. of vehicles involved >=4, then 25 < IncD <=45 

Rule 6-f: If 12 <=Incident Hour <=23, then 5 <=IncD <=25; Else 65 <IncD <=85 

Rule 6-g: If Ratio of total lanes blocked <=0.25, then 30 <IncD <=55 

  ; Else 90 <IncD <=150 
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Rule 6-h: If Pavement is snow/ice, then Rule 7-f; Else 5 <=IncD <=30 

Rule 6-i: If occurs during Off-Peak Hours, then 5 <=IncD <=25 

 ; Else 5 <=IncD <=25 

Rule 6-j: If occurs during Off-Peak Hours, then Rule 7-g; Else 5 <=IncD <=25 

Rule 6-k: If Ratio of total lanes blocked <0.5, then 5 <=IncD <=25 

 ; Else 20 <IncD <=45 

Rule 6-l: If Exit no. is 27 or 28, then 15 <IncD <=25 

 ; Else if Exit no. is 31, 34 or 39, then 25 <IncD <=35 

Rule 6-m: If Ratio of blocked lanes in the opposite direction=0, then 30 <IncD <=45 

  ; Else 45 <IncD <=60 

Rule 6-n: If Ratio of blocked lanes in the same direction <0.25, then 5 <=IncD <=25 

  ; Else 10 <IncD <=30 

Rule 6-o: If Ratio of total lanes blocked =0, then 5 <=IncD <=15 

  ; Else Rule 7-h 

At this level, information about pavement conditions and blocked lanes play 

significant roles in determining the durations of incidents resulting in property damage. 

Incident durations clearly increased as the lane-blockage ratio increased. In addition, the 

time at which an incident occurred had a significant relation with its resulting incident 

duration.  

7th Level 

Rule 7-a: If Ratio of total lanes blocked <=0.25, then 5 <=IncD <=25 

  ; Else 35 <IncD <=50 

Rule 7-b: If occurs in the Daytime, then Rule 8-a; Else 35 <IncD <=65 
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Rule 7-c: If Pavement is wet, then 35 <IncD <=55; Else 10 <IncD <=35  

Rule 7-d: If No. of total lanes blocked =0, then 10 <IncD <=35; Else 30 <IncD <=45 

Rule 7-e: If Pavement is wet, then 10 <IncD <=15; Else 40 <IncD <=60 

Rule 7-f: If Road is I-495, then 10 <IncD <=20 

 ; Else if Road is I-270, then 50 <IncD <=110 

Rule 7-g: If Road is I-495 IL, then 5 <=IncD <=20 

  ; Else if Road is I-495 OL, then 10 <IncD <=30 

  ; Else if Road is I-270, then 30 <IncD <=45 

Rule 7-h: If Ratio of blocked lanes in the same direction<0.5, then 30 <IncD <=45 

  ; Else 45 <IncD <=70 

One noticeable impact on the incident duration at this level is due to the factor of 

Road. According to Rules 7-f and 7-g, incidents occurring on I-495 are likely to be 

shorter than those same types of incidents occurring on I-270. The same relations have 

also been observed in developing Rule 3-c at the 3rd level. 

8th Level 

Rule 8-a: If Response Time < 30 mins, then 5 <=IncD <=30; Else 40 <IncD <=60 

4.6.2 Performance and Validation Results  

 Tables 4.10 and 4.10(a) show the summary of model performance for incidents 

with property damage. Most of terminal nodes demonstrate quite satisfactory results for 

both of the range of incident durations and the confidence. The performance of Rule 1, 

with just the If condition, demonstrates satisfactory results without any additional splitter. 

The predicted range of incident durations is less than 30 minutes, and the probability 

(confidence) is greater than 0.7 (70 percent). Since one of the main research purposes is 
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to discover relations between incident duration and associate factors, this study continues 

to build the tree to its next level.  

 However, the Else condition in the Rule 1 showed unsatisfactory performance 

results. Even with additional splitters, the performance for this sub-data set was not 

improved, as shown in Table 4.10 (see Rules for 2-b and 3-c). Since the durations of 

incidents within this subset of small size (i.e., 46) are distributed over a wide range, the 

RBTM could not yield definitive results. This suggests the need to calibrate a 

supplemental model. 

 In addition, since Rules 5-c, 7-b, and 7-d could not perform up to the expected 

level, they also need supplemental models. However, due to the limited sample data for 

these subsets, this study has developed a supplemental model for these cases with the 

higher-level subset used for Rule 4-a. 

 Tables 4.11 and 4.11(a) summarize the model validation results. Note that a large 

number of rules at levels 1, 2, 3, and 4 demonstrated satisfactory results in the validation 

data set, while many rules at lower levels did not perform as expected, due either to the 

need for additional factors or the lack of sufficient sample data. 
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Table 4.10  Summary of Estimation Results for the RBTM for CPD Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 [5, 30] 75.00 249 392 [5, 30] 60.87 28 46 

2 Rule 2-a [5, 45] 86.03 234 272 N/A N/A N/A 120 

3 Rule 2-b [5, 30] 78.79 26 33 
[5, 75] 72.73 8 11 

(90, 200]  100.00 2 2 

4 Rule 3-a [5, 45] 83.49 91 109 [5, 30] 78.53 128 163 

5 Rule 3-b [5, 30] 82.22 74 90 [5, 35] 86.67 26 30 

6 Rule 3-c [5, 110] 66.67 4 6 
(60, 240] 100.00 2 2 

(40, 60] 66.67 2 3 

7 Rule 4-a [5, 45] 82.81 53 64 
[5, 45] 85.29 29 34 

[5, 45] 81.82 9 11 

8 Rule 4-b [5, 30] 82.05 96 117 
[5, 30] 72.09 31 46 

(120, 180] 66.67 2 3 

9 Rule 4-c [5, 30] 88.00 22 25 [5, 30] 80.00 52 65 

10 Rule 4-d (15, 35] 77.78 7 9 [5, 35] 90.48 19 21 

11 Rule 5-a [5, 45] 78.95 30 38 [5, 40] 88.46 23 26 

12 Rule 5-b (10, 45] 93.75 15 16 [5, 30] 77.78 14 18 

13 Rule 5-c [5, 20] 75.00 6 8 (60, 85] 66.67 2 3 

14 Rule 5-d [5, 30] 83.87 26 31 

[5, 25] 66.67 4 6 

(30, 55] 60.00 3 5 

(120, 180] 100.00 1 1 

15 Rule 5-e [5, 20] 100.00 1 1 (120, 180] 100.00 2 2 

16 Rule 5-f [5, 15] 100.00 3 3 
[5, 20] 85.71 12 14 

[5, 30] 75.00 6 8 

17 Rule 5-g [5, 40] 96.67 29 30 
[5, 30] 79.17 19 24 

[5, 30] 81.82 9 11 

18 Rule 5-h (15, 35] 100.00 6 6 (30, 60] 100.00 3 3 

19 Rule 5-i [5, 30] 91.67 11 12 
[5, 20] 100.00 5 5 

(10, 35] 75.00 3 4 

20 Rule 6-a [5, 40] 80.00 20 25 [5, 35] 61.54 8 13 

21 Rule 6-b [5, 25] 76.19 16 21 (25, 40] 80.00 4 5 

22 Rule 6-c (25, 45] 62.50 5 8 (10, 25] 62.50 5 8 
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Table 4.10(a)  Summary of Estimation Results for the RBTM for CPD Incidents Occurring in 
Montgomery County (cont’d) 

No Rule 

IF ELSE 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

23 Rule 6-d [5, 30] 78.57 11 14 

[5, 20] 100.00 2 2 

(90, 150] 100.00 1 1 

[5, 15] 100.00 1 1 

24 Rule 6-e [5, 30] 100.00 7 7 
[5, 30] 85.71 18 21 

(25, 45] 100.00 3 3 

25 Rule 6-f [5, 25] 100.00 4 4 (65, 85] 100.00 2 2 

26 Rule 6-g (30, 55] 75.00 3 4 (90, 150] 100.00 1 1 

27 Rule 6-h (55, 105] 66.67 2 3 [5, 30] 100.00 5 5 

28 Rule 6-i [5, 25] 82.35 14 17 [5, 25] 69.23 9 13 

29 Rule 6-j [5, 30] 75.00 9 12 [5, 25] 83.33 10 12 

30 Rule 6-k [5, 25] 77.78 7 9 (20, 45] 100.00 2 2 

31 Rule 6-l (15, 25] 100.00 2 2 (25, 35] 75.00 3 4 

32 Rule 6-m (30, 45] 100.00 2 2 (45, 60] 100.00 1 1 

33 Rule 6-n [5, 25] 83.33 5 6 (10, 30] 83.33 5 6 

34 Rule 6-o [5, 15] 100.00 2 2 (30, 70] 100.00 2 2 

35 Rule 7-a [5, 25] 80.00 8 10 (35, 50] 100.00 2 2 

36 Rule 7-b [5, 30] 66.67 6 9 (35, 65] 75.00 3 4 

37 Rule 7-c (35, 55] 100.00 2 2 (10, 35] 84.21 16 19 

38 Rule 7-d (10, 35] 80.00 4 5 (30, 45] 66.67 2 3 

39 Rule 7-e (10, 15] 100.00 4 4 (40, 60] 75.00 3 4 

40 Rule 7-f (10, 20] 100.00 1 1 (50, 110] 100.00 2 2 

41 Rule 7-g [5, 20] 71.43 5 7 
(10, 30] 100.00 4 4 

(30, 45] 100.00 1 1 

42 Rule 7-h (30, 45] 100.00 1 1 (45, 70] 100.00 1 1 

43 Rule 8-a [5, 30] 85.71 6 7 (40, 60] 100.00 2 2 
Note:  1. Sample size is 438.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 
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Table 4.11  Summary of Validation Results for the RBTM for CPD Incidents Occurring in 
Montgomery County 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 [5, 30] 69.41 177 255 [5, 30] 48.72 19 39 

2 Rule 2-a [5, 45] 88.24 165 187 N/A N/A N/A 68 

3 Rule 2-b [5, 30] 60.00 18 30 
[5, 75] 50.00 4 8 

(90, 200]  0.00 0 1 

4 Rule 3-a [5, 45] 86.89 53 61 [5, 30] 73.81 93 126 

5 Rule 3-b [5, 30] 68.00 34 50 [5, 35] 66.67 12 18 

6 Rule 3-c [5, 110] 60.00 3 5 
(60, 240] 0.00 0 2 

(40, 60] 0.00 0 1 

7 Rule 4-a [5, 45] 91.89 34 37 
[5, 45] 81.82 18 22 

[5, 45] 50.00 1 2 

8 Rule 4-b [5, 30] 75.79 72 95 
[5, 30] 69.23 18 26 

(120, 180] 0.00 0 3 

9 Rule 4-c [5, 30] 61.54 8 13 [5, 30] 70.27 26 37 

10 Rule 4-d (15, 35] 100.00 2 2 [5, 35] 68.75 11 16 

11 Rule 5-a [5, 45] 86.96 20 23 [5, 40] 85.71 12 14 

12 Rule 5-b (10, 45] 87.50 7 8 [5, 30] 50.00 7 14 

13 Rule 5-c [5, 20] 50.00 1 2 (60, 85] N/A N/A 0 

14 Rule 5-d [5, 30] 68.18 15 22 

[5, 25] 50.00 2 4 

(30, 55] N/A N/A 0 

(120, 180] N/A N/A 0 

15 Rule 5-e [5, 20] N/A N/A 0 (120, 180] 0.00 0 3 

16 Rule 5-f [5, 15] 0.00 0 5 
[5, 20] 57.14 4 7 

[5, 30] 100.00 1 1 

17 Rule 5-g [5, 40] 87.50 14 16 
[5, 30] 70.59 12 17 

[5, 30] 50.00 2 4 

18 Rule 5-h (15, 35] 100.00 2 2 (30, 60] N/A N/A 0 

19 Rule 5-i [5, 30] 66.67 4 6 
[5, 20] 55.56 5 9 

(10, 35] 100.00 1 1 

20 Rule 6-a [5, 40] 86.67 13 15 [5, 35] 75.00 6 8 

21 Rule 6-b [5, 25] 69.23 9 13 (25, 40] 0.00 0 1 

22 Rule 6-c (25, 45] 40.00 2 5 (10, 25] 33.33 1 3 
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Table 4.11(a)  Summary of Validation Results for the RBTM for CPD Incidents Occurring in 
Montgomery County (cont’d) 

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration

(mins) 

Conf. 1 
(%) Support Total 

Cases 

23 Rule 6-d [5, 30] 50.00 5 10 

[5, 20] 33.33 1 3 

(90, 150] N/A N/A 0 

[5, 15] N/A N/A 0 

24 Rule 6-e [5, 30] 50.00 1 2 
[5, 30] 66.67 12 18 

(25, 45] 0.00 0 2 

25 Rule 6-f [5, 25] 100.00 2 2 (65, 85] 0.00 0 2 
26 Rule 6-g (30, 55] N/A N/A 0 (90, 150] N/A N/A 0 
27 Rule 6-h (55, 105] N/A N/A 0 [5, 30] 100.00 1 1 
28 Rule 6-i [5, 25] 75.00 6 8 [5, 25] 50.00 4 8 
29 Rule 6-j [5, 30] 55.55 5 9 [5, 25] 75.00 6 8 
30 Rule 6-k [5, 25] 0.00 0 1 (20, 45] 100.00 3 3 
31 Rule 6-l (15, 25] N/A N/A 0 (25, 35] N/A N/A 0 
32 Rule 6-m (30, 45] N/A N/A 0 (45, 60] N/A N/A 0 
33 Rule 6-n [5, 25] 80.00 4 5 (10, 30] 0.00 0 1 
34 Rule 6-o [5, 15] 0.00 0 1 (30, 70] N/A N/A 0 
35 Rule 7-a [5, 25] 50.00 6 12 (35, 50] 0.00 0 3 
36 Rule 7-b [5, 30] 57.14 4 7 (35, 65] N/A N/A 0 
37 Rule 7-c (35, 55] 0.00 0 2 (10, 35] 45.45 5 11 
38 Rule 7-d (10, 35] 100.00 3 3 (30, 45] 50.00 1 2 
39 Rule 7-e (10, 15] 0.00 0 3 (40, 60] 0.00 0 2 
40 Rule 7-f (10, 20] N/A N/A 0 (50, 110] N/A N/A 0 

41 Rule 7-g [5, 20] 100.00 3 3 
(10, 30] 33.33 2 6 
(30, 45] N/A N/A 0 

42 Rule 7-h (30, 45] N/A N/A 0 (45, 70] 0.00 0 1 

43 Rule 8-a [5, 30] 57.14 4 7 (40, 60] N/A N/A 0 
Note:  1. Sample size is 294.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 
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4.7 The RBTM for Incident Nature of Disabled Vehicles (DV)  

4.7.1 The Tree Structure 

 The following rules construct the RBTM for incidents with disabled vehicles 

occurring in Montgomery County.  

1st Level 

Rule 1: If Weekend, then 5<=IncD <=25; Else Rule 2-a 

2nd Level 

Rule 2-a: If occurs during Off-Peak Hours, then 5<=IncD <=35; Else Rule 3-a 

3rd Level 

Rule 3-a: If Shoulder is not blocked, then 5<=IncD <=30; Else Rule 4-a 

4th Level 

Rule 4-a: If No. of shoulders blocked=1, then Rule 5-a; Else 5<=IncD <=20 

5th Level 

Rule 5-a: If Pickup Van is not involved, then 5<=IncD <=25; Else 5<=IncD <=20  

Note that incidents occurring during peak hours were more likely to be cleared in 

a shorter duration than those during off-peak hours. Also, when any shoulder lane was 

blocked at peak hours due to a disabled vehicle, the average incident duration was 

slightly shorter than for incidents without a shoulder blockage. 
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When a disabled vehicle is a pickup van, the estimated range for incident duration 

is 5 to 20 minutes. But for other types of disabled vehicles, the incident can be cleared 

within 25 minutes from the time of detection. 

4.7.2 Performance and Validation Results  

Since most incidents due to Disabled Vehicle (83.3 percent for Montgomery 

County alone) fell in a relatively short range of 5 to 30 minutes, a simple rule could 

predict their resulting durations. Also, even after applying a series of additional splitters 

to subdivide the data set, the confidence for each subset does not show any noticeable 

change. This is due mainly to the fact that the incidents caused by disabled vehicles 

involved only a single vehicle. 

As shown in Table 4.12, most of these developed rules showed satisfactory results 

for their confidence and the estimated range of incident durations. Their validation 

results, reported in Table 4.13, were also at an acceptable level, except for those having 

only very small samples.  

Table 4.12  Summary of Estimation Results for the RBTM for Disabled Vehicles Incidents 
Occurring in Montgomery County  

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 [5, 25] 81.82 9 11 [5, 35] 89.51 274 306 

2 Rule 2-a [5, 35] 88.76 158 178 [5, 30] 85.16 109 128 

3 Rule 3-a [5, 30] 83.95 68 81 [5, 25] 85.11 40 47 

4 Rule 4-a [5, 25] 83.72 36 43 [5, 20] 100.00 4 4 

5 Rule 5-a [5, 25] 82.35 28 34 [5, 20] 88.89 8 9 

Note:  1. Sample size is 317.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 
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Table 4.13  Summary of Validation Results for the RBTM for Disabled Vehicles Incidents 
Occurring in Montgomery County  

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 
(%) Support Total 

Cases 

1 Rule 1 [5, 25] 0.00 0 1 [5, 35] 88.61 140 158 

2 Rule 2-a [5, 35] 93.51 72 77 [5, 30] 76.54 62 81 

3 Rule 3-a [5, 30] 68.09 32 47 [5, 25] 85.29 29 34 

4 Rule 4-a [5, 25] 85.29 29 34 [5, 20] N/A N/A 0 

5 Rule 5-a [5, 25] 85.19 23 27 [5, 20] 85.71 6 7 

Note:  1. Sample size is 159.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 

4.8 The RBTM for Incident Nature of Others 

4.8.1 The Tree Structure 

 The rules used to construct the RBTM for Incident Nature of Others are presented 

below. 

1st Level 

Rule 1: If Shoulder is not blocked, then Rule 2-a; Else Rule 2-b  

2nd Level 

Rule 2-a: If Tractor-Trailer is not involved, then Rule 3-a; Else IncD=493 

Rule 2-b: If occurs during Off-Peak Hours, then Rule 3-b; Else Rule 3-c 

The rules at this level reflect clearly that incidents involving tractor-trailers 

generally resulted in longer incident durations than those with any other types of vehicles. 

3rd Level 

Rule 3-a: If Single-Unit Truck is not involved, then Rule 4-a; Else IncD=105 
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Rule 3-b: If Pickup Van is not involved, then Rule 4-b; Else Rule 4-c 

Rule 3-c: If Ratio of total lanes blocked <0.25, then 5<= IncD <=20 

 ; Else 30< IncD <=50 

All of the rules at this level collectively capture the fact that the number of lanes 

being blocked during the response operation positively correlated with the resulting 

incident durations. Incident durations also positively correlated with the involvement of 

heavy vehicles or trucks. 

4th Level 

Rule 4-a: If Total no. of lanes blocked <=1, then Rule 5-a; Else 25< IncD <=40 

Rule 4-b: If Road is I-495, then Rule 5-b; Else if Road is I-270, then Rule 5-c 

  ; Else IncD=607 

Rule 4-c: If Road is I-495, then 30< IncD <=40 

 ; Else if Road is I-270, then 10< IncD <=25 

The rules constructed at this level reflect the fact that the response efficiency for 

the same incident type may vary significantly among all highways under the coverage of 

emergency incident response operations. 

5th Level 

Rule 5-a: If Road is I-495, then 5<= IncD <=25 

  ; Else if Road is I-270, then 20< IncD <=35 

Rule 5-b: If occurs in the Daytime, then Rule 6-a; Else Rule 6-b 

Rule 5-c: If Tractor-Trailer is not involved, then Rule 6-c; Else Rule 6-d 
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As expected, the time of detection was one of the critical factors contributing to 

the resulting incident durations. In general, the duration of incidents occurring in the 

daytime was likely to be shorter than that at night. 

6th Level 

Rule 6-a: If Pavement is dry, then Rule 7-a; Else 60< IncD <=75 

Rule 6-b: If Tractor-Trailer is not involved, then 45< IncD <=60 

 ; Else IncD > 120 

Rule 6-c: If Exit no. is 1, then 15< IncD <=40 

 ; Else 10< IncD <=20 

Rule 6-d: If Ratio of blocked lanes in the same direction < 1, then 80< IncD <=100 

 ; Else 240< IncD <=300 

Information at this level reveals that incidents occurring at some locations may 

have longer durations than those of the same type occurring at other locations. For 

instance, Rule 6-c indicates that the incidents occurring at Exit 1 on I-270 were likely to 

last longer than those at other locations.  

7th Level 

Rule 7-a: If Tractor-Trailer is not involved, then 5<= IncD <=25 

 ; Else IncD > 120 

4.8.2 Performance and Validation Results 

 Since the sample size for these cases was relatively small, it was difficult to 

develop a reliable RBTM. It was even more challenging to validate this model, because 

the validation data set had only 18 records of such incidents. As a result, more than 50 
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percent of rules could not be validated (see Table 4.15). Nevertheless, the overall 

performance is promising, except with some rules shown in Table 4.14. A supplemental 

model for enhancing the performance level was thus developed and is presented in the 

next chapter.  

Table 4.14  Summary of Estimation Results for the RBTM for Incident Nature – Others 
Occurring in Montgomery County  

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 [5, 40] 78.57 11 14 [5, 40] 63.64 21 33 

2 Rule 2-a [5, 30] 69.23 9 13 493 100.00 1 1 

3 Rule 2-b [5, 40] 63.64 14 22 [5, 35] 63.64 7 11 

4 Rule 3-a [5, 30] 75.00 9 12 105 100.00 1 1 

5 Rule 3-b [5, 40] 63.64 14 22 (15, 40] 100.00 4 4 

6 Rule 3-c [5, 20] 85.71 6 7 (30, 50] 75.00 3 4 

7 Rule 4-a [5, 25] 70.00 7 10 (25, 40] 100.00 1 1 

8 Rule 4-b [5, 50] 63.64 7 11 
(10, 40] 66.67 4 6 

607 100.00 1 1 

9 Rule 4-c (30, 40] 100.00 3 3 (10, 25] 100.00 1 1 

10 Rule 5-a [5, 25] 75.00 6 8 (20, 35] 100.00 2 2 

11 Rule 5-b [5, 40] 75.00 6 8 (45, 60] 66.67 2 3 

12 Rule 5-c (10, 40] 100.00 4 4 (90, 300] 100.00 2 2 

13 Rule 6-a [5, 25] 71.43 5 7 (60, 75] 100.00 1 1 

14 Rule 6-b (45, 60] 100.00 2 2 > 120 100.00 1 1 

15 Rule 6-c (15, 40] 100.00 2 2 (10, 20] 100.00 2 2 

16 Rule 6-d (80, 100] 100.00 1 1 (240, 300] 100.00 1 1 

17 Rule 7-a [5, 25] 80.00 4 5 > 120 50.00 1 2 
Note:  1. Sample size is 47.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 
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Table 4.15  Summary of Validation Results for the RBTM for Incident Nature – Others 
Occurring in Montgomery County  

No Rule 

IF ELSE 
Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

Incident 
Duration 

(mins) 

Conf. 1 
(%) Support Total 

Cases 

1 Rule 1 [5, 40] 66.67 4 6 [5, 40] 75.00 9 12 

2 Rule 2-a [5, 30] 66.67 4 6 493 N/A N/A 0 

3 Rule 2-b [5, 40] 80.00 4 5 [5, 35] 42.86 3 7 

4 Rule 3-a [5, 30] 50.00 2 4 105 0.00 0 2 

5 Rule 3-b [5, 40] 80.00 4 5 (15, 40] N/A N/A 0 

6 Rule 3-c [5, 20] 50.00 1 2 (30, 50] 20.00 1 5 

7 Rule 4-a [5, 25] 33.33 1 3 (25, 40] 100.00 1 1 

8 Rule 4-b [5, 50] 100.00 4 4 
(10, 40] 100.00 1 1 

607 N/A N/A 0 

9 Rule 4-c (30, 40] N/A N/A 0 (10, 25] N/A N/A 0 

10 Rule 5-a [5, 25] 50.00 1 2 (20, 35] N/A N/A 0 

11 Rule 5-b [5, 40] 75.00 3 4 (45, 60] N/A N/A 0 

12 Rule 5-c (10, 40] 100.00 1 1 (90, 300] N/A N/A 0 

13 Rule 6-a [5, 25] 50.00 2 4 (60, 75] N/A N/A 0 

14 Rule 6-b (45, 60] 100.00 2 2 > 120 100.00 1 1 

15 Rule 6-c (15, 40] 100.00 1 1 (10, 20] N/A N/A 0 

16 Rule 6-d (80, 100] N/A N/A 0 (240, 300] N/A N/A 0 

17 Rule 7-a [5, 25] 50.00 2 4 > 120 N/A N/A 0 
Note:  1. Sample size is 18.  
     2. Highlighted cells are terminal nodes in the RBTM. 
1 Conf. stands for confidence. 

4.9 Overall Findings and Conclusions 

 This section summarizes the overall findings with the RBTMs.  

1. For the categories of Collision-Personal Injury, Collision-Property Damage, 

Disabled Vehicle and Others, it turned out that the spatial factor, County, emerged 

as the second splitter. This implies that the durations for the same types of 

incident varied significantly among different jurisdictions. 
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2. The sequence of splitters varies significantly among different categories of 

incidents. This is likely due to the fact that incidents of different natures have 

different characteristics and are associated with different contributing factors. 

3. RBTMs are more flexible for assigning an appropriate estimated incident duration 

range in given conditions (sub-data set or node) than CART. Unlike CART, this 

model includes a function to regroup categories of the dependent variable (i.e., 5-

minute intervals of incident duration from 5 to 120 minutes), so as to determine 

the most appropriate range of incident duration for a selected subset. 

4. As expected, heavy vehicle involvement tended to increase incident durations, 

due to its complexity to manage or the need for special equipment for clearance 

operations (e.g., wrecker). 

5. Incidents occurring at nighttime or during off-peak hours generally had longer 

durations than those in daytime, due to the lack of sufficient response units for 

incident clearance operations.  

6. When incidents resulted in Collision-Fatality, or Property Damage, the clearance 

operation was generally more efficient in the blocked shoulder lane scenarios than 

in those leaving it open. This finding implies that shoulder lane blockage helps 

reduce the duration of severe accidents, as it provides a wider space for 

emergency response units to work. 

7. Similarly, during Collision-Fatality incidents, if the emergency response unit can 

close more lanes in the same direction, it generally results in a shorter duration.  

8. The impact of wet pavement, a proxy variable for rainy days, on the efficiency of 

incident response operations was not definitive for the existing data records. It 
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showed a positive correlation with incident durations for those resulting in 

Collision-Property Damage, but a reverse relation for the category of Collision-

Fatality incidents. For all other types of incidents, its impact on the resulting 

incident durations was not statistically significant. 

Due to the complex nature of incidents and of response operations, one should not 

expect the above RBTM to capture all embedded relations and provide an operationally 

acceptable performance for real-world applications. Hence, based on the promising 

information generated from the RBTM, this study further developed some supplemental 

models to improve prediction accuracy for the duration of a detected incident. Depending 

on the available size of sample data, this study employed either the multinomial logit 

(MNL) model or the multiple linear regression model to develop supplemental 

components. 

Lastly, RBTMs, illustrated in a tree shape, are included in Appendix 2. 
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Chapter 5: Supplemental Models 

5.1 Introduction 

  This chapter presents two supplemental models for improving the accuracy of 

predicting incident durations. The first, the multinomial logit (MNL) model, is used for 

the sub-data sets with unsatisfactory results from the main (RBTM) models for incidents 

of type CPI and CPD. This model is proposed because samples in those subsets show a 

condensed distribution, and the sample size was large enough to compare to the number 

of categories in a dependent variable. The second model is the multiple linear regression 

model, used for data sets from incident natures of CF and Others, since those relatively 

small data sets show a scattered distribution.  

Figures 5.1 and 5.2 illustrate the sub-data sets used for developing supplemental 

models for incident natures of CPI and CPD. Incident natures of CF and Others used the 

entire data set to develop their supplemental models. Brief descriptions of core concepts 

for these two methods, along with estimation and validation results, are presented below. 
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Figure 5.1 Sub-Data Sets Used for Developing Supplemental Models for Incidents Causing Collision-Personal Injury 
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Figure 5.2 Sub-Data Sets Used for Developing Supplemental Models for Incidents Causing Collision-Property Damage 
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5.2 Supplemental Model – 1: Multinomial Logit (MNL) Models  

5.2.1 Multinomial Logit Models 

Analyses of discrete or nominal scale data are one of the major areas in 

transportation studies, as many interesting policy-sensitive analyses are implemented 

based on such data (Washington et al., 2003). Examples of discrete scale data in the 

transportation field are the travel mode (automobile, bus, metro), the type or class of 

vehicle owned, and the type of accident/injury severity (property damage only, personal 

injuries, fatalities). These types of data could be classified into two categories based on 

conceptual viewpoint — behavioral choice and description of discrete outcomes from a 

physical event (Washington et al., 2003). The travel mode choice and class of vehicle 

owned belong to the former category, i.e., these are behavioral choices; accident injury 

severity belongs to the latter category, since it merely explains discrete outcomes of a 

physical event. Similarly, intervals of incident durations can be treated as discrete 

outcomes from physical events.  

Although these two conceptual perspectives are modeled by statistically identical 

methodologies, the fundamental theories used to derive those models show many 

differences (Washington et al., 2003). For instance, discrete scale models for a behavioral 

choice are derived from economic theories, while the model for the description of 

physical phenomena is based on simple probabilistic theories (Washington et al., 2003). 

In addition, though both discrete scale models for the two categories are derived from 

random utility theory (McFadden, 1974), different functions are used for determining a 

choice.  
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In a behavior model, the choice is made based on the utility function, and it is 

assumed that the decision maker will choose the alternative that has the greatest value of 

utility function among all available alternatives. However, for incidents, the individuals 

are no longer decision makers who make the best choice among alternatives. Rather, they 

are accident victims who have been injured or need responses from specialists. Thus, in 

the physical phenomenon model, a choice is made to the alternative with the highest 

value in propensity function (Khorashadi, 2003). Nonetheless, the possible forms of the 

two models are the same. The only difference is the interpretation of functional elements, 

such as utility or propensity (Khorashadi, 2003).  

 One of the most common models used for analyzing discrete data is the logit 

model. It has been widely used in mode choice and incident severity studies, but it is a 

relatively new approach to the study of incident durations. 

For sub-data sets in CPI and CPD which showed unsatisfactory results in the 

RBTM, the MNL model was applied to estimate the relation between each category of 

incident durations and its associated factors. A well-calibrated model would allow its 

users to predict the duration category of a detected incident. The core concept of MNL, 

like that used in accident severity models (Khorashadi, 2003; Ulfarsson, 2001), is briefly 

described below:  

The propensity function, Rni, which represents the propensity of incident n 

towards interval i of incident durations, is defined as 

 niniini XR εβ +=       (Eq. 5.1) 

where I is a set of preclassified incident durations (defined in an interval form), Xni is a 

vector of observable characteristics (e.g., environmental conditions, geometric 

Ii∈∀
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conditions, and so on) that determine the discrete outcome for observation n (incident n), 

βi is a vector of estimated parameters, and εni is an error term accounting for unobservable 

attributes and effects that influence the determination of discrete outcomes for 

observation n. Assuming that the disturbance terms of the propensity function are (1) 

independent, (2) identically distributed, and (3) follow the Gumbel distribution with a 

location parameter η=0 and a scale parameter μ=1, the MNL model is derived as  
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where, βi is a vector of coefficients, and Xni and Xnj are vectors of attributes for 

alternatives i and j. A detailed discussion regarding MNL models can be found in the 

literature (Ben-Akiva and Lerman, 1985; Koppelman and Bhat, 2006; Washington et al., 

2003). 

 The initial specification of the propensity functions is set as follows: 
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where:  

•  is an alternative specific constant for each alternative. 

• NoTT is the number of tractor-trailers involved. 

• NoPUV is the number of pickup vans involved. 

• NoSUT is the number of single-unit trucks involved. 

i
0β
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• NoVehInv is the number of vehicles involved. 

• I270 is 1 if the incident occurred on Interstate I-270; 0 otherwise. 

• I495 is 1 if the incident occurred on Interstate I-495; 0 otherwise. 

• Night is 1 if the incident occurred at night; 0 otherwise. 

• RtTTLBL is the ratio of total number of blocked lanes over the total number of 

lanes.  

• RespTime is the response time in minutes. 

• NoLnBl(S) is the number of lanes blocked in the same direction. 

• Pave_SI is 1 if the pavement condition is snowy/icy; 0 otherwise. 

Since there are too many variables included, the model development is initialized 

with all coefficients being set as generic, except for alternative specific constants. First, 

variables showing insignificance at the 0.10 significance level were removed from the 

propensity functions (for a two-tailed test, the critical values of t-statistic are ±1.65 for 

the 0.10 significance level). Then, variables not included at the initial stage were included 

to test their significance in propensity functions. After filtering out insignificant 

variables, all coefficients were set as alternative specific to test if all variables are 

significant. Insignificant variables were removed from the corresponding propensity 

function. Lastly, variables previously removed from the model were included one by one, 

again with their coefficients being set as alternative specific, to verify whether any 

significant variable was left out. 
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5.2.2 Estimation Results with MNL 

 As shown in Figure 5.1, for CPI, three MNL models were needed, while two 

MNL models were required for CPD (see Figure 5.2), since each sub-data set needed a 

different model to result in the best performance. The categories (intervals) of incident 

durations were defined differently for each MNL model, since their distributions of 

incident durations differed from one another. Table 5.1, following, summarizes the 

categories of incident durations for each MNL model. 

Table 5.1 Categories of Incident Durations (minutes) for Each MNL Model 
 Submodel I Submodel II Submodel III 

CPI1 
[5, 25] 
(25, 45] 

> 45 

[5, 25] 
(25, 50]  

> 50

[5, 25] 
(25, 45] 

> 45 

CPD2 [5, 30] 3 

> 30 3 

[5, 25] 
(25, 45] 

> 45
N/A 

1 CPI stands for Collision-Personal Injury  
2 CPD stands for Collision-Property Damage  
3 Since this submodel includes only two categories for a dependent variable, a binary logit model was 

applied instead of MNL. However, the theoretical concepts and background for binary logit models are 
the same as for MNL.  

Developed MNL models are presented in Tables 5.2(a) to 5.3(b), and the 

estimated and validated probabilities for incident durations for each MNL model are 

summarized in Table 5.4. All of the estimated coefficients, except for the alternative 

specific constant in the propensity function for incident durations of 5 to 25 minutes for 

CPI-Submodel I, show significance at the 90 percent level (an absolute value of the t-

statistic should be above 1.65). The insignificance of alternative specific constants is 

irrelevant, because they reflect the average effects of variables which were not included 

in the model. Thus, they should always be included, even though they are not well 

understood in the behavioral interpretation (Koppelman and Bhat, 2006).  
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In general, the signs and magnitudes of coefficients for all variables were as 

expected. In previous chapters, an increase in the number of heavy vehicles (single-unit 

trucks, pick up vans, or tractor-trailers) involved was found to cause an increase in 

incident duration. This observation is reflected as the negative sign of the coefficients for 

variables NoTT, NoSUT, and NoPUV in the short incident duration alternatives, e.g., 5 to 

25 or 25 to 45 minutes, of the MNL models. The observation that incident duration 

increases as the number of vehicles involved increases is reflected in the same way. The 

negative coefficient for Night in alternatives 5 to 25 and 25 to 45 minutes reflects the 

observation that when an incident occurs at night, it is likely to last longer than one 

occurring in the daytime. Models also show a positive effect of I-495 in reducing incident 

duration by having a positive coefficient in those short incident duration alternatives. In 

other words, incidents occurring on Interstate I-495 are more likely to be cleared earlier 

than the other cases. Some noticeable outcomes for each explanatory variable are 

summarized below. 

1. In MNL models for CPI, the pavement condition showed different effects on each 

submodel. In Submodel I, the pavement condition Dry is likely to shorten incident 

durations, as it has a positive coefficient for the alternative of 5 to 25 minutes. 

But, in Submodel III, this variable tends to increase incident durations, since it has 

a negative coefficient for the alternative of 25 to 45 minutes. Meanwhile, 

incidents occurring in the pavement condition Snow/Ice tend to increase the 

durations in Submodel II, which is reflected by this variable having a negative 

coefficient for the incident duration alternatives of 5 to 25 and 25 to 50 minutes. 
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2. Interstate I-270 has different effects in the submodels for CPI and CPD. In CPI-

Submodel II, the variable I-270, shows a tendency to decrease incident durations, 

which is reflected by the larger positive coefficient for the 5 to 25 minutes 

alternative than for the 25 to 45 minutes alternative. On the other hand, I-270 

shows a negative effect on shortening incident durations in CPD-Submodel I. 

3. Particular locations (exits) on I-495 and I-270 cause longer incident durations. 

This is reflected in several MNL models with negative coefficients for the related 

variables in short incident duration alternatives, e.g., 5 to 25 or 25 to 45 minutes. 

Exits that commonly appeared to have this kind of effect were 27, 33, 36, and 39 

on I-495 and 1, 4, 9, and 18 on I-270. The reason for this can be found in the 

complexity of geometric configurations around these exit areas or in their long 

distances from traffic operation centers. Especially when incidents occurred in the 

areas around exits 33, 36, and 39 on I-495 and exits 1 and 4 on I-270, the response 

and clearance times for the incidents were longer, due to the difficulty in access 

caused by complex geometric configurations and heavy traffic at those locations. 

I-495 splits from I-270 at exits 34 and 35, and merges again with I-270 at exit 38. 

I-270 splits into two directions at exit 2 and merges with I-495 at exits 34 and 38. 

Such features around this area cause heavy weaving traffic, which can interrupt 

the main stream.  

4. Response times were proportional to the incident durations in CPD-Submodels, 

and this relation exhibits a negative coefficient for the shortest incident duration 

alternative in CPD-Submodels I and II. 
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5. In CPD-Submodel II, Incident Hour represents the hour in time when the incident 

occurred; this showed a strong relationship with incident durations. The format of 

Incident Hour is defined as numbers from 0 to 23 without AM or PM. Developed 

submodels implied that incidents occurring in the evening (approximately 20 ~ 

23) were likely to last longer than those occurred in any other time. This effect is 

similar to the one from Night factor, but with more sensitivity to each hour.  

As shown in Table 5.4, the probabilities for the three categories of incident 

durations do not show large discrepancies from one another in the submodels for CPI. 

For example, for two categories (25 to 45 minutes and > 45 minutes) in CPI-Submodel I, 

the difference in probability was only about 2 percent. Similar phenomena can also be 

found in CPI-Submodels II and III for the first two categories of incident durations. In 

MNL models for CPD, the difference in probability between alternatives was larger, but 

still no alternative dominated the entire data set (i.e., had over 70 percent probability). 

For this reason, such probabilistic models as MNL models must be applied to those 

subsets for which it is hard to find any short range of incident durations with a high 

probability of satisfying given conditions.  

Developed MNL models were validated with year 2006 data set. By using this 

data set, predicted probabilities for each incident duration category in each model were 

found and summarized in Table 5.4. The difference between the estimated and validated 

probability was within 10 percent.  
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Table 5.2(a)  CPI-Submodel I: Estimated Propensity Functions for the MNL Model  
=============================================================================================== 
R5-25 = 0.910 -3.550*NoTT -2.140*Night -0.536*NoVehInv +2.434*I495 -3.053*NoSUT -0.971*NoPUV +1.053*Pave_Dry   
 (0.9)   (-2.9)              (-2.4)              (-2.4)                       (3.2)            (-3.3)                (-2.3)                   (1.6) 
 
R25-45 = 2.131 -1.241*NoTT -2.678*Night -0.536*NoVehInv +1.253*I495 -3.053*NoSUT 

 (2.9)   (-2.0)              (-3.2)              (-2.4)                       (1.9)            (-3.3)  
 
Rgt45 = 0 (Base) 
=============================================================================================== 
The number of observations used : 98 
Likelihood with zero coefficients = -106.5654 
Likelihood with constants only  = -105.5362 
Final value of Likelihood    = -76.2511 
  
Note : Numbers in parentheses are t-statistic values 
 
 
 
 

<Legend> 
I495 : 1 if an incident occurred on Interstate I-495; 0 otherwise 
Night : Binary variable for incident time (Night=1, otherwise=0) 
NoTT: Number of Tractor-trailers involved 
NoPUV : Number of Pickup Vans involved 
NoVehInv : Number of vehicles involved 
NoSUT : Number of Single-Unit Trucks involved 
Pave_Dry : 1 if Pavement Condition is Dry; 0 otherwise 
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Table 5.2(b)  CPI-Submodel II: Estimated Propensity Functions for the MNL Model 
=============================================================================================== 
R5-25 = 1.952 +1.827*I270 -0.655*NoVehInv +2.663*I495 -2.776*Pave_SI -2.050*Ex495  
 (2.5)    (2.0)             (-3.1)                       (2.3)            (-2.7)                 (-2.1)           
 
R25-50 = 1.576 +1.568*I270 -0.422*NoVehInv +2.471*I495 -3.626*Pave_SI -2.253*Ex495 

 (2.0)     (1.8)            (-2.2)                       (2.1)            (-2.7)                  (-2.3) 
 
Rgt50 = 0 (Base) 
=============================================================================================== 
The number of observations used : 189 
Likelihood with zero coefficients = -206.5391 
Likelihood with constants only  = -179.5752 
Final value of Likelihood    = -167.4129 
 
Note : Numbers in parentheses are t-statistic values 
 
 
 
 
 
 
 
 

<Legend> 
I495 : 1 if an incident occurred on Interstate I-495; 0 otherwise 
I270 : 1 if an incident occurred on Interstate I-270; 0 otherwise 
NoVehInv : Number of vehicles involved 
Ex495 : Binary variable to indicate the specific locations on I-495 
      (exit no. 27, 28, 33, 34, 36, 38, 39) 
Pave_SI : 1 if Pavement Condition is Snow/Ice; 0 otherwise 
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Table 5.2(c)  CPI-Submodel III: Estimated Propensity Functions for the MNL Model 
=============================================================================================== 
R5-25 = 1.868 -3.346*NoTT -2.773*Night -2.509*PEAKHR -3.874*Ex270   
 (2.8)   (-3.2)              (-2.1)              (-2.2)                    (-3.6)      
 
R25-45 = 3.031 -3.346*NoTT -1.603*Night -2.095* PeakHR -2.727* Ex270 -0.865*Ex495 -1.099*Pave_Dry 

 (3.8)    (-3.2)              (-1.7)             (-1.9)                      (-3.1)               (-1.5)               (-2.1) 
 
Rgt45 = 0 (Base) 
=============================================================================================== 
The number of observations used : 82 
Likelihood with zero coefficients = -90.0862 
Likelihood with constants only  = -85.9470 
Final value of Likelihood    = -65.3223 
  
Note : Numbers in parentheses are t-statistic values 
 
 
 

 
 

<Legend> 
Ex495 : Binary variable to indicate the specific locations on I-495 
      (exit nos. 27, 28, 33, 34, 36, 38, 39) 
Ex270 : Binary variable to indicate the specific locations on I-270 
      (exit nos. 1, 4, 9, 13, 15, 18, 22) 
Night : Binary variable for incident time (Night=1, otherwise=0) 
NoTT : Number of Tractor-trailers involved 
PeakHR : 1 if an incident occurred during peak hours; 0 otherwise 
Pave_Dry : 1 if Pavement Condition is Snow/Ice; 0 otherwise 
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Table 5.3(a)  CPD-Submodel I: Estimated Propensity Functions for the MNL Model 
=============================================================================================== 
R5-30 = 8.517 -4.610*NoTT -2.390*NoPUV -0.136*RespTm -3.804*I270 

(3.4)   (-3.3)              (-1.8)                 (-1.9)                  (-2.5) 
 
Rgt30 = 0 (Base) 
=============================================================================================== 
The number of observations used : 46 
Likelihood with zero coefficients = -31.8848 
Likelihood with constants only  = -30.7891 
Final value of Likelihood    = -13.7119 
  
Note : Numbers in parentheses are t-statistic values 
 

 
 

<Legend> 
NoTT : Number of Tractor-trailers involved 
NoPUV : Number of Pickup Vans involved 
RespTm : Response Time in minutes 
I270 : 1 if an incident occurred on Road I-270; 0 otherwise 
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Table 5.3(b)  CPD-Submodel II: Estimated Propensity Functions for the MNL Model 
=============================================================================================== 
R5-25 = 6.772 -0.169 *IncHR -0.782*NoVehInv -3.078*Ex495 -3.333*Ex270 +1.228*Pave_Dry -0.089*RespTm   
 (4.1)   (-2.4)                (-2.0)                     (-3.6)               (-3.1)                 (1.7)                     (-3.2) 
  
R25-45 = 5.155 -0.171*IncHR -0.948*NoVehInv -2.654*Ex495 -2.883*Ex270 +1.572*SUT_Ind +1.349*Pave_Dry   

 (3.1)    (-2.3)               (-2.2)                    (-3.0)               (-2.4)                 (2.4)                     (1.8) 
 
Rgt45 = 0 (Base) 
=============================================================================================== 
The number of observations used : 109 
Likelihood with zero coefficients = -119.7487 
Likelihood with constants only  = -107.2160 
Final value of Likelihood    = -79.9817 
  
Note : Numbers in parentheses are t-statistic values 
 
 
 
 
 
 
 
 
 

<Legend> 
IncHR : Hour in time incident occurred (0 ~ 23) 
NoVehInv : Number of vehicles involved 
Ex495 : Binary variable to indicate the specific locations on I-495 
      (exit nos. 27, 33, 36, 39, 41) 
Ex270 : Binary variable to indicate the specific locations on I-270 
      (exit nos. 1, 4, 9, 18) 
SUT_Ind : 1 if Single-Unit Trucks involved; 0 otherwise 
Pave_Dry : 1 if Pavement Condition is Dry; 0 otherwise 
RespTm : Response Time in minutes 



 

 102

Table 5.4  Summary of Incident Duration Probabilities Estimated and Validated by MNL Submodels 

Note: Val. Prob. stands for ‘Validated Probability’. 

 

Submodel I Submodel II Submodel III 
Incident 
Duration 
(mins) 

Obs. 
Prob. 

Est. 
Prob. 

Val. 
Prob. 

Incident 
Duration 
(mins) 

Obs. 
Prob. 

Est. 
Prob. 

Val. 
Prob. 

Incident 
Duration 
(mins) 

Obs. 
Prob. 

Est. 
Prob. 

Val. 
Prob. 

CPI 
[5, 25] 
(25, 45] 

> 45  

0.276 
0.378 
0.346 

0.265 
0.378 
0.357 

0.328 
0.388 
0.284 

[5, 25] 
(25, 50] 

> 50  

0.481 
0.408 
0.111 

0.483 
0.408 
0.108 

0.494 
0.428 
0.078 

[5, 25] 
(25, 45] 

> 45 

0.366 
0.439 
0.195 

0.366 
0.439 
0.195 

0.461 
0.379 
0.160 

CPD [5, 30]  
> 30  

0.609 
0.391 

0.609 
0.391 

0.576 
0.424 

[5, 25] 
(25, 45] 

> 45 

0.550 
0.285 
0.165 

0.550 
0.285 
0.165 

0.609 
0.235 
0.156 

N/A N/A N/A N/A 
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5.3 Supplemental Model – 2: Multiple Linear Regression Models 

5.3.1 Multiple Linear Regression Models 

 Linear regression is one of the most widely studied and used statistical and 

econometric techniques for its usefulness in modeling various relationships between 

variables. Moreover, numerical estimation, interpretation, and application of regression 

models are relatively easy, since such models can be solved by a number of non-specialty 

commercial statistical software.  

 Multiple linear regression models include two or more independent variables, 

assuming that the dependent variable is a linear function of a series of independent 

variables and an error term. In general, the multiple linear regression models can be 

mathematically expressed as 

ikikiii XXXY εββββ +++++= L33221     (Eq. 5.3) 

where, Yi is the dependent variable, Xki is the ith observation on independent variable Xk, 

εi is the error term, and βk is the estimated coefficient for independent variable Xk. βk is 

estimated in a way to minimize the error sum of squares (known as a least-squares 

procedure), defined as 

 ∑ ∑ −== 22 )ˆ(ˆ iii YYESS ε        (Eq. 5.4) 

where, kikii XXY βββ ˆˆˆˆ
221 +++= L  , and kβ̂  is the slope estimate. Since there are 

numerous references and much literature regarding this estimation technique 

(Washington et al., 2003; Pindyck and Rubinfeld, 1998), this report will not discuss it in 

detail.  
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5.3.2 Estimation Results with Multiple Linear Regression Models 

 The estimated multiple linear regression models for Collision-Fatality and Others 

incidents are presented in Tables 5.6 and 5.7, respectively. Generally, the sign and 

magnitude of estimated coefficients for variables included in models were as expected. 

Independent variables were tested at the 90 percent significance level, which means that 

the absolute value of the t-statistic should be greater than or equal to 1.65 for that variable 

to be considered as significant. The estimated models for Collision-Fatality and Others 

were valid at the 90 percent significance level, since the p-values for both models were 

less than 0.0001. Specific discussions are summarized below for each model. 

Collision-Fatality (CF) 

1. As shown in Table 5.5, the involvement of heavy vehicles (tractor-trailers and 

single-unit trucks) increased fatality incident durations, and this result is similar to 

the result from RBTMs. The results also confirmed that the increase in the 

number of blocked lanes in the same direction, including shoulder lanes, 

contributed to the reduction of incident durations. This observation was reflected 

in the term Ratio_sdbl*SHDBK having a negative coefficient and a high t-statistic 

value (i.e., -2.87). 

2. As mentioned in Chapter 4, one interesting finding from RBTMs regarding 

Collision-Fatality incidents was the decrease of incident durations in the wet 

pavement condition. This finding was also reflected in this estimated linear 

regression model as a negative coefficient and a high t-statistic value (i.e., -2.11) 

for the wet pavement condition. 
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3. This model, also reflecting that durations increased for Collision-Fatality 

incidents occurring on Interstates I-68 or MD/I-295, gave a positive coefficient to 

this binary variable. 

4. The observation from RBTMs, that the durations of fatality incidents occurring at 

night are likely to be longer than in the daytime, was reflected in this estimated 

model by a positive coefficient for the binary variable Night. 

5. As shown in Table 5.7, the overall percentage of correct estimation result for 

durations of fatality incidents using the estimated regression model was 74.7 

percent. Incident durations greater than or equal to 120 minutes were well 

estimated, while other categories for incident durations were not estimated 

correctly at all.  

6. The model was tested using the validation data set — incidents occurring in year 

2006 — and the results are shown in Table 5.8. The overall percentage of correct 

prediction result was 78.1 percent, which was slightly higher than the one for 

estimation. Similarly, the predictions for incident durations greater than or equal 

to 120 minutes were satisfactory, while the predictions for other categories of 

incident durations were unsatisfactory. 

7. Absolute error, defined as the absolute value of the difference between observed 

and estimated/predicted value, was also computed as a reference to evaluate the 

estimated incident durations model. In the model estimation results, 50.7 percent 

of records showed an absolute error within 30 minutes, while 81.3 percent of 

records had an absolute error within 60 minutes. For model results with the 
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validation data set, 40.6 percent and 59.3 percent of records showed an absolute 

error within 30 minutes and 60 minutes, respectively.  

Others 

1. Unlike the linear regression model for CF incidents, the dependent variable in the 

model for Others is the logarithm of the incident duration. This transformation of 

the dependent variable was applied to identify linear relationships between the 

dependent and independent variables, which is a requirement of the regression 

modeling framework (Washington et al., 2003). 

2. According to the estimated linear regression model, heavy vehicle (tractor-trailers 

and single-unit trucks) involvement was likely to increase incident durations. 

Tractor-trailer involvement (TT_Ind) showed an especially strong positive 

relationship with incident durations, as the t-statistic value for this was very high 

(i.e., 4.64). This relation was not found in the RBTMs. 

3. The model, reflecting the observation that incident durations for Others increased 

as the number of blocked lanes in the same direction increases, assigned a positive 

coefficient to that variable. Response times also showed a strong positive 

relationship with incident durations in the estimated model. 

4. Among other incident natures, Debris showed a negative relationship with 

incident durations, while Emergency Road Work had a positive relationship. Other 

events in incident type Others did not show any significance with incident 

durations. That is, durations of incidents caused by debris were likely to be 

shorter than those caused by any other incident type in Others. On the other hand, 
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emergency road work caused longer incident durations than any other type of 

incident in Others.  

5. The overall percentage of correct estimation was 66 percent, as shown in Table 

5.9. For relatively short (i.e., 5 to 30 minutes) and long (i.e., >=120 minutes) 

incident durations, the model performed well. However, for incident durations 

between 30 and 120 minutes, the model did not give a good estimation. Especially 

for incidents with durations between 60 and 120 minutes, this model did not give 

any correct estimations.  

6. For predicted results based on the validation data set, as summarized in Table 

5.10, the overall percentage of correct prediction percentage was slightly lower 

(i.e., 61.1 percent) than the estimation results. This table also shows that the 

model predicted incident durations between 5 and 60 minutes quite well, while 

incident durations longer than 60 minutes were not predicted correctly at all. 

7. An absolute error was also computed for each record in the model development 

and validation data set. In the data set used for model development, 61.7 percent 

of records showed an absolute error within 15 minutes, while 80.9 percent of 

them showed it within 30 minutes. In the validation data set, the results for 

absolute errors were similar to these in the model development data set; 61.1 

percent of them were within 15 minutes, while 77.8 percent of them were within 

30 minutes.  
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Table 5.5  Estimated Multiple Linear Regression Model for Incident Nature-CF 
 
Incident Duration (mins) = 162.95 - 31.94*Pave_Wet + 32.05*NoSUT + 42.03*NoTT + 29.50*Night + 59.10*Rd68_295  

        (13.64)  (-2.11)                     (2.02)                  (3.17)                (2.33)              (2.47) 
             
        - 42.03*Ratio_sdbl*SHDBK    
        (-2.87)                            

 
=============================================================================================== 
 
Number of observations used : 75 
R2 = 0.3730 
F-value for Model = 6.74 
P-value for Model = < 0.0001 
 
Note : Numbers in parentheses are t-statistic values 
 
 
 
 
 
 
  
 

<Legend> 
Pave_Wet : 1 if Pavement Condition is Wet; 0 otherwise 
NoSUT : Number of Single-Unit Trucks involved 
NoTT: Number of Tractor-trailers involved 
Night : Binary variable for incident time (Night=1, otherwise=0) 
Rd68_295 : 1 if an incident occurred on Road I-68 or MD/I-295 
Ratio_sdbl : Number of lanes blocked in same direction/Number of  
lanes in that direction 
SHDBK : 1 if Shoulder lane is blocked; 0 otherwise 
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Table 5.6  Estimated Multiple Linear Regression Model for Incident Nature-Others 
=============================================================================================== 
 
Log(Incident Duration) = 2.67 + 0.96*SUT_Ind + 1.73*TT_Ind + 0.23*No_sdbl + 0.04*RespTm - 0.72*Debris  

    (13.03) (2.28)                 (4.64)                (2.38)                  (2.31)              (-1.93) 
     
    + 1.83*EmgRdWk  
     (2.00)          

 
=============================================================================================== 
 
Number of observations used : 47 
R2 = 0.6017 
F-value for Model = 10.07 
P-value for Model = < 0.0001 
 
Note : Numbers in parentheses are t-statistic values 
 
 
 

<Legend> 
SUT_Ind : 1 if Single-Unit Trucks are involved; 0 otherwise 
TT_Ind : 1 if Tractor-trailers are involved; 0 otherwise 
No_sdbl : Number of lanes blocked in same direction 
RespTm : Response Time in minutes 
Debris : 1 if Incident Nature is Debris; 0 otherwise  
EmgRdWk : 1 if Incident Nature is Emergency Road Work; 0 
otherwise 
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Table 5.7  Estimated Results of Multiple Linear Regression Model for Incident Nature CF 
 
Incident Duration (mins) Estimated 

Observed < 60  [60, 90) [90, 120) >=120 Correct 
Percent 

< 60  0 0 0 1 0.0%
[60, 90) 0 0 2 5 0.0%
[90, 120) 0 1 0 9 0.0%
>=120 0 1 0 56 98.2%
Overall Correct Percent N/A 0.0% 0.0% 78.9% 74.7%
Note: sample size is 75. 
 
 
Table 5.8  Predicted Results of Multiple Linear Regression Model for Incident Nature CF 
 
Incident Duration (mins) Predicted 

Observed < 60 [60, 90) [90, 120) >=120 Correct 
Percent 

< 60 0 0 0 0 N/A
[60, 90) 0 0 0 5 0.0%
[90, 120) 0 0 0 7 0.0%
>=120 0 0 2 50 96.2%
Overall Correct Percent N/A N/A 0.0% 80.6% 78.1%
Note: sample size is 64. 
 
 
Table 5.9  Estimated Results of Multiple Linear Regression Model for Incident Nature 

Others 
 
Incident Duration 

(mins) Estimated 

Observed [5, 30) [30, 60) [60, 90) [90, 120) >=120 Correct 
Percent 

[5, 30) 21 2 1 0 0 87.5%
[30, 60) 9 5 0 0 0 35.7%
[60, 90) 0 1 0 0 0 0.0%
[90, 120) 0 0 2 0 0 0.0%
>=120 0 1 0 0 5 83.3%
Overall 
Correct Percent 70.0% 55.6% 0.0% N/A 100.0% 66.0%

Note: sample size is 47. 
 
 
 



 

 111

Table 5.10  Predicted Results of Multiple Linear Regression Model for Incident Nature – 
Others 

 
Incident Duration 

(mins) Predicted 

Observed [5, 30) [30, 60) [60, 90) [90, 120) >=120 Correct 
Percent 

[5, 30) 8 1 0 0 0 88.9%
[30, 60) 4 3 0 0 0 42.9%
[60, 90) 0 0 0 1 0 0.0%
[90, 120) 0 0 0 0 1 0.0%
>=120 0 0 0 0 0 N/A
Overall 
Correct Percent 66.7% 75.0% N/A 0.0% 0.0% 61.1%

Note: sample size is 18. 

To sum up, linear regression models are suitable for finding the relationships 

between incident duration and its factors. In the estimated regression models, several 

findings discovered from RBTMs are confirmed. Given these estimation/prediction 

results and absolute errors, further research is recommended for more reliable models, 

especially for CF incidents. This recommendation is also supported by Figures 5.3 to 5.6, 

since they show that the incident durations between observed and estimated/predicted for 

CF are quite different, while those for Others are close. In general, fatality incidents 

cause longer incident durations, and they require a more specific and systematic incident 

management strategy based on well-predicted incident durations to soothe their impact 

(i.e., traffic congestion or delay). To achieve this, the first thing to accomplish is to 

collect additional incident records with additional information, e.g., the number of 

pedestrians, drivers, and/or occupants injured or killed and the collision type (head-on, 

rear-end, etc).  
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Figure 5.3  Comparisons between Observed and Estimated Incident Durations Using 

Developed Multiple Linear Regression Model for Incident Nature-CF 
 
 
 
 
 

 
Figure 5.4  Comparisons between Observed and Predicted Incident Durations Using 

Developed Multiple Linear Regression Model for Incident Nature-CF 

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80

In
ci

de
nt

 D
ur

at
io

n 
(m

in
s)

Observed Estimated

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

In
ci

de
nt

 D
ur

at
io

n 
(m

in
s)

Observed Predicted



 

 113

 
Figure 5.5  Comparisons between Observed and Estimated Incident Durations Using 

Developed Multiple Linear Regression Model for Incident Nature-Others 
 
 
 
 
 

 
Figure 5.6  Comparisons between Observed and Predicted Incident Durations Using 

Developed Multiple Linear Regression Model for Incident Nature-Others 
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5.4 Illustrative Description of the Application of the Developed Model  

 To apply the developed model in this study to real-time incident management 

operations, reliable information about a detected incident should first be acquired 

promptly from dispatched response units. Then, using that information, operators can 

employ the following steps to predict the approximate range of incident duration. 

Step 1: Identify the detected incident nature and location of its jurisdiction to select 

the appropriate RBTM. 

Step 2: Trace the selected RBTM from its root to the corresponding terminal node 

using the traffic incident information provided by dispatched units. 

Step 3: At the corresponding terminal node, take the predicted incident duration if the 

predicted outcome satisfies the evaluation criteria based on its historical data 

set.  

Step 4: Otherwise, trace back node by node until the node satisfying the evaluation 

criteria is found. 

Step 5: If one cannot find a satisfactory node in the RBTMs, then use a supplemental 

model to predict the incident duration or the probability distribution of the 

target incident durations. 

This whole process can be expedited if the models (RBTMs and supplemental 

models), along with evaluation criteria, are programmed with a user-friendly interface. 

 Table 5.11 provides actual examples of traffic incident information from 

dispatched units and the predicted incident duration using the RBTMs and supplemental 

models. Variable names appearing in Table 5.11 are described in Table 5.12. The first 

example concerns a fatality incident occurring in Prince George County in 2006. The 
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RBTM predicted incident duration of 80 to 100 minutes with 33.33 percent confidence 

based on the data set collected from years 2003 to 2005. Since it did not satisfy one of 

our criteria (i.e., confidence should be greater than 70 percent), we used a supplemental 

model (the multiple linear regression model presented in Table 5.5) to obtain a more 

reliable prediction of incident duration. The model predicted that the incident duration 

would be approximately 121 minutes, and this prediction was closer to the observed 

incident duration, 144 minutes, than the one from the RBTM. The same phenomenon was 

observed in the fifth example.  

For the second example, the RBTM predicted incident duration of 10 to 35 

minutes with 75 percent confidence. Since this outcome satisfied our criteria, application 

of a supplemental model to this case was not needed. A similar explanation can be 

applied to the fourth example for the disabled vehicle incident. On the other hand, the 

third example showed only 60 percent confidence with the RBTM, so a supplemental 

model was required. The supplemental model (the MNL model presented in Table 5.3(b)) 

predicted an incident duration of 5 to 25 minutes with 0.84 probability, and this was 

taken as the predicted duration of the detected incident. Note that the RBTM predicted a 

duration of 30 to 45 minutes, which was quite far from the observed incident duration of 

12.82 minutes. 
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Table 5.11  Traffic Incident Information Examples and Their Predicted Incident Duration 
Example No. 1 2 3 4 5 

Event Open  
Date & Time 

2006-03-25 
14:14:33 

2003-07-02 
18:33:52 

2006-11-06 
19:47:01 

2004-05-26 
08:19:00 

2006-02-02 
08:57:28 

County Prince George Montgomery Montgomery Montgomery Montgomery 

Incident Nature CF CPI CPD DISABLED OTHERS 
(Vehicle Fire) 

Pavement Condition Dry Dry Dry Dry Dry 
Road Info I-495 IL I-495 IL I-270 N I-270 S I-495 OL 
Exit No. 23 41 11 5 38 

CHART Involvement 1 1 1 1 1 
SUT_Ind 0 0 0 0 0 
PUV_Ind 0 0 0 0 0 
TT_Ind 0 0 0 0 0 
No_TT 0 0 0 0 0 

No_SUT 0 0 0 0 0 
No_PUV 0 0 0 0 0 

No_Veh_Inv 3 1 2 1 1 
Weekend 1 0 0 0 0 
Peak Hour 0 0 0 1 1 

no_sd_lane_bl 4 1 1 0 1 
no_od_lane_bl 0 0 0 0 0 

no_shd_bl 2 1 0 0 1 
Shoulder Blockage 1 1 0 0 1 

total_lane_bl 4 1 1 0 1 
ratio_sd_bl 1 0.25 0.125 0 0.25 
ratio_od_bl 0 0 0 0 0 

ratio_total_bl 1 0.12 0.125 0 0.25 
no_lane_one 4 4 8 4 4 
Incident Hour 14 18 19 8 8 

Night 0 0 0 0 0 
Response Time 

(minutes) 0.38 23.91 0.17 0.78 2.05 

Clearance Time 
(minutes) 143.15 8.81 12.65 5.6 5.02 

Observed-INCDm1 143.53 32.73 12.82 6.38 7.07 
Predicted-RBTM2 (80, 100] (10, 35] (30, 45] [5, 30] (30~50] 

Predicted-SM3 120.93 

SM II4 SM II5 [5, 25] 

N/A 19.78 
N/A 

[5, 25] 0.84 
(25, 45] 0.13 

> 45 0.03 
Confidence 
in RBTM2 33.33% 75.00% 60.00% 78.13% 44.44% 

1 Observed incident duration in minutes 
2 Predicted incident duration in minutes based on RBTM 
3 Predicted incident duration in minutes based on Supplemental Models (SM) 
4 CPI-Submodel II presented in Table 5.2(b)  
5 CPD-Submodel II presented in Table 5.3(b)  
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Table 5.12  Descriptions of Variable Names 
Example No. Example number 

Event Open  
Date & Time Date and time of incident occurred 

County County 
Incident Nature Incident nature 

Pavement Condition Pavement condition 
Road Info Road information (Road name and direction) 
Exit No. Exit number for I-495, I-95, I-695 and I-270 

CHART Involvement 1 if CHART is involved; 0 otherwise 
SUT_Ind 1 if any single-unit truck is involved; 0 otherwise 
PUV_Ind 1 if any pick up van is involved; 0 otherwise 
TT_Ind 1 if any tractor-trailer is involved; 0 otherwise 
No_TT Number of tractor-trailers involved 

No_SUT Number of single-unit trucks involved 
No_PUV Number of pick up vans involved 

No_Veh_Inv Number of vehicles involved 
Weekend 1 if the incident occurred day is weekend; 0 otherwise 
Peak Hour 1 if the incident occurred time is peak hours; 0 otherwise 

no_sd_lane_bl Number of blocked lanes in the same direction 
no_od_lane_bl Number of blocked lanes in the opposite direction 

no_shd_bl Number of blocked shoulder lanes 
Shoulder Blockage 1 if any shoulder lane is blocked; 0 otherwise 

total_lane_bl Total number of blocked lanes in same and opposite direction  
ratio_sd_bl = no_sd_lane_bl / no_lane_one 
ratio_od_bl = no_od_lane_bl /no_lane_one 

ratio_total_bl = total_lane_bl / (2×no_lane_one) 
no_lane_one Number of lanes in same direction 
Incident Hour Hour in time that an incident is detected (occurred) (0 to 23) 

Night 0 if 6 <= Incident Hour < 20; 0 otherwise 
Response Time 

(minutes) Response Time in minutes 

Clearance Time 
(minutes) Clearance Time in minutes 

Observed-INCDm Observed incident duration in minutes 
Predicted-RBTM Predicted incident duration in minutes based on RBTM 

Predicted-SM Predicted incident duration in minutes based on supplemental models 

Confidence in RBTM Confidence based on RBTMs 
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Chapter 6: Advanced Study for Collision-Fatality Incidents  

6.1 Introduction 

Traffic congestion has long been considered as one of the primary operational 

problems in urban highway networks. Although incidents on highways, regardless of 

their resulting severities, will cause significant delays due to reductions in capacity, those 

incidents involving fatalities, personal injuries, or property damages generally require 

much longer clearance times and, consequently, long traffic queues, as well as potential 

secondary incidents.  

The durations of fatality incidents are mostly distributed in the wide range of time 

from about 60 minutes up to 400 minutes. This implies that it takes traffic at least 60 

minutes to recover from an incident which results in fatalities, and most fatality incidents 

can last up to three or four hours, or even longer. Their uniquely long durations highlight 

the need to develop a separate prediction model for such incidents. In addition, the annual 

frequency of fatality incidents is much smaller than the frequency of other types of 

incident. Thus, fatality incidents are highly likely to be considered as outliers when 

developing a generalized incident duration models.  

Chapters 4 and 5 developed an individual model for CF incidents using RBTMs 

and regression models. Although the developed methodology works quite well for other 

kinds of incidents, it has performed unsatisfactorily in CF incidents.  

To enhance model performance in predicting durations of fatality incidents 

required the inclusion of more detailed information, especially information related to the 

severity of collisions, which, in the CHART-II database, is usually reflected by the 

number of vehicles involved. However, to fully capture the complex characteristics of 
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fatality incidents, it is essential to include additional factors, such as the number of 

fatalities or injuries, to capture the majority of the duration variances of fatality-incidents. 

To accomplish that aim, this study integrated the Accident Report database, archived in 

the Maryland State Police Department, with CHART-II to explore more information. A 

detailed description of the database utilized for this study is provided in the next section. 

6.2 Integrated Data Descriptions  

This study was conducted with two different databases, namely the CHART-

II database and the Accident Report database, managed by MDSHA and the Maryland 

State Police Department, respectively.  

 While CHART-II includes many kinds of measurable and observable information 

for characterizing responded incidents regardless of severity, the Accident Report 

database is the primary source for providing more comprehensive information, 

particularly for severe incidents resulting in fatalities and personal injuries. Those two 

databases were integrated manually in order to generate a high-quality database.  

The additional variables retrieved from the Accident Report DB included:  

• Severity information: the number of fatalities and injuries for pedestrians or 

driver/occupants; 

• Collision information: collision types and vehicle movements; and  

• Others: weather, light and road division conditions.  

Figure 1, created based on the fatality incidents in the integrated database, shows 

that the distribution of incident durations for fatalities used in this study is right-skewed. 

The fatality incidents hardly appear in the short and middle ranges of durations, that 

is, less than 60 minutes, while about 95 percent of them are distributed in the range 
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between 60 minutes and 360 minutes. This range is considerably wider than those for 

other incident natures. For instance, about 95 percent of incidents causing only property 

damage are distributed in the range of five to 90 minutes in CHART-II. 

 

Figure 6.1  Distribution of Durations of Fatality Incidents in the Integrated Database  

Another feature of fatality-incidents, along with distribution over a wide range, is 

small sample size. Basically, the frequency of fatality incidents is much smaller than the 

frequency of other incidents of different types. In CHART-II, the fatality incidents 

constitute approximately one percent of the total incident records. Since some of those 

records had information missing, only several dozens of fatality incidents with complete 

information were available annually for the analysis. For this study, using the integrated 

databases, the number of fatality incidents with complete information that could be 

extracted totaled 116 for years 2003 to 2006. Due to the expected small sample size, 

about two-thirds of them (76) were randomly selected for model estimation; the 
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remaining 40 cases were used for model validation. The statistical summary of each data 

set is briefly described in Table 6.1. 

Table 6.1  Statistical Summary for Estimation and Validation Data Sets 
 Estimation Set Validation Set 

Average Incident Duration 191.40 182.21 

Standard Deviation in Durations 83.73 65.62 

Median in Durations 171.63 164.10 

Average number of fatalities 1.08 1.05 

Average number of personal injuries 1.00 0.76 

Since this study adopts the Naïve Bayesian Classifier (NBC) as the primary 

methodology for model development, incident durations initially recorded as continuous 

values were converted to several predefined categories of time interval. Based on the 

distribution of fatality incident durations presented in Figure 6.1, this study has classified 

incidents lasting less than 60 minutes as one category, while incidents lasting over 300 

minutes are classified as another category. For incidents lasting between 60 and 300 

minutes, we further divided them into four intervals, each covering a range of 60 minutes, 

as shown in Table 6.2.  

Table 6.2  Incident Duration Categories Converted for Model Development 
Category Corresponding Incident Duration 

1 < 60 minutes 

2 [60 ~ 120) minutes 

3 [120 ~ 180) minutes 

4 [180 ~ 240) minutes 

5 [240 ~ 300) minutes 

6 >=300 minutes 
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6.3 Methodology 

6.3.1 Naïve Bayesian Classifier (NBC) 

The NBC assigns the object I to one of the discrete categories, 21 ,, , mD D DL , 

based on its attributes, 1 2, , , mX X XL . To do so, the NBC first calculates probabilities 

that I belongs to each category, conditioned on the observed and measurable attributes. 

I  is assigned to the category with the greatest probability. This classifier is modeled 

based on Bayes' theorem, with the strong assumption that the available attributes are 

mutually independent. In other words, an NBC assumes that the presence of a specific 

attribute is unrelated to the presence of any other attributes.  

The probability that I  belongs to each category is calculated based on conditions 

of the observed attributes, that is, 1 2( | , , , )niP I D X X X∈ L . Applying Bayes’ Theorem, 

this can be rewritten as  

1 2

1 2
1 2

( |( ) )
( )

, , ,
, , ,

( | , , , ) i in

n
ni

IP I D P D
P

X X X
X X X

P I D X X X ∈ ∈∈ = L

L
L  

Assuming that Xis are mutually independent, this reduces to 

1

1 2
1 2

(( ) | )

( ), , ,
( | , , , )

n

i j i
j

n
ni

IP I D P D

P

X

X X X
P I D X X X =

∈ ∈
∈ =

∏

L
L  

for each category iD . Due to the fact that the denominator will be the same for all 

categories, the only thing to be done is to compute the numerator for each category i . 

Then, we choose i satisfying 

* arg max ( ) ( | )
1

n
i P I D P X I Di j ij
∈ ∈ ∈∏

=
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and assign I  to category *iD  (Boyles, 2007). 

Applying NBCs to the incident duration model, the attribute Xi corresponds to an 

observable or measurable incident characteristic, such as pavement conditions, locations 

of incidents, number of vehicles involved, number of lanes blocked, and so on. Non-

discrete features of incidents needed to be discretized first. Also, continuous values of 

incident durations were redefined as discrete categories of time interval, as discussed in 

the previous section. Once an incident occurs, the NBC would calculate the probability 

that the incident duration would fall into each category and choose the category of the 

incident duration with the highest probability. The advantage of doing so is that it can 

still compute the probability, even if the information of some attributes is unavailable.  

 Parameters (i.e., the probabilities ( ) and ( | )P I D P X I Di j i∈ ∈ ) in this model can 

be estimated with relative frequencies from the training set. Thus, if given category and 

attribute values never occurred together in the training set, then the probability of the 

given conditions would be estimated as zero. This is problematic, since it would wipe out 

all information in the other probabilities when they are multiplied. To avoid this, zero 

probabilities were replaced by a small positive value when calculating these products. 

6.4 Model Development and Results 

Since not all attributes positively correlate to the incident durations, it is necessary 

to identify the critical attributes that can improve the NBC model. To find the best 

attribute set, a simple NBC model for each attribute alone was first developed separately. 

By comparing all estimated results, attributes with best results were chosen as the initial 

set of attributes. Among those selected attributes, we selected any one attribute and made 
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another set adding one more attribute. Then we compared results from those two attribute 

sets and took the best results. We repeated this process of adding attributes one by one 

until we acquired the best set of attributes. Additionally, attributes consisting of multiple 

categories were re-created as dummy variables for each category to investigate if any of 

those categories had a stronger impact on the model. Here is the selected list of the best 

set of attributes for the model: 

• Counties; 

• Pavement Conditions: Unknown, Dry, Wet or Snow/Ice; 

• Number of Tractor-Trailers; 

• Number of Pick-Up Vans; 

• PM Peak Hour Indicator: 1 if occurred in 4 PM to 6:30 PM; 0 otherwise; 

• Night Indicator: 1 if occurred in 8 PM to 6 AM; 0 otherwise; 

• Number of Blocked Shoulder Lanes; 

• Number of Drivers/Occupants Injured; 

• Number of Drivers/Occupants Killed; 

• Lighting Conditions: Daylight, Dawn/Dusk, Dark-Lights On or Dark-No lights; 

• Collision Type — Head-On indicator; 

• Collision Type — Head-On Left Turn indicator; and 

• Road-795: 1 if an incident occurred on I-795; 0 otherwise.  

To test the performance of the calibrated model, the estimated categories of 

incident durations were compared with the observed categories of incident durations. The 

estimated categories matched exactly with the observed categories in 60 out of 76 cases 

in the estimation set. The calibrated model was then applied to the validation set to test its 
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prediction performance. Overall, 24 out of 40 cases in the validation set were correctly 

predicted by the calibrated model. This result implies that the developed model was 

accurate in approximately 78.9 percent and 60.0 percent of cases in the estimation and 

validation sample sets, respectively.  

Figure 6.2 illustrates the overall model performance, including estimation and 

validation sets. Considering the sample size, the developed model performed 

satisfactorily for incident durations of 120 to 180 minutes and 180 to 240 minutes. The 

model also performed well for the durations of <60 and >=300 minutes, though the 

number of incidents for these categories were relatively small. On the other hand, the 

model performed worst in durations of 60 to 120 minutes. 

  

*Note: Percentages represent the proportion of correctly estimated/predicted incidents based on the 
developed NBC model. 

 
Figure 6.2  Distribution of Overall Model Performance 
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To verify the power of the developed NBC model, the research team tried to 

develop other classification models, such as discrete choice models, to compare their 

performances. Unfortunately, parameters included in the calibrated MNL model hardly 

showed statistical significance, except for three attributes: Number of Blocked Shoulder 

Lanes, Road Division Conditions (Not divided, One-way, Divided without Barrier, or 

Divided with Barrier) and Fixed Object (Culvert-Ditch, Curb, Guardrail-Barrier, 

Embankment, Fence, Light Support Pole, Tree-Shrubbery, or Others). 

Alternately, a multiple linear regression model was developed using the incident 

duration as a continuous variable. Similar to the MNL model, few attributes appeared to 

be statistically significant on the calibrated model at the 90 percent significance level. 

The developed regression model is summarized in Table 6.3. Observed incident durations 

and estimated/predicted incident durations by the regression model were categorized on 

the basis of Table 6.2 and compared to each other to check the performance of the 

developed regression model. The regression model correctly estimated about 29 percent 

of incidents in the estimation set and correctly predicted approximately 28 percent of 

incidents in the validation data set. Although it is hard to conclude that the developed 

NBC model is the best approach among existing methodologies, these comparisons in 

model performance at least prove that the NBC model would be one of the most 

promising approaches for the target analysis, especially under the limited available 

sample size. 

In the NBC model, it is noticeable that collision types were one of the significant 

attributes contributing to the durations of fatality incidents. Even though it is intuitively 

reasonable, the developed model statistically proved that collisions associated with head-
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on and head-on-left-turn, rather than other collision types, are one of the primary 

determinants which cause the fatality incident durations longer. The regression model 

developed for the model performance comparisons also led to the same conclusion. As 

matter of fact, the average incident duration for head-on and head-on-left-turn collisions 

was 255 and 249 minutes, respectively. In contrast, the average incident duration for a 

sideswipe collision, which is also one of the most common collision types, was 166 

minutes in this study sample.    

Another notable finding is the contribution of road division conditions. In the 

MNL and multiple linear regression models, the road division condition exhibited as a 

statistically significant factor. The average incident durations based on the study sample 

also showed the significant difference of this attribute, since incidents on not-divided 

roads (14 cases) lasted 244 minutes, on average, but lasted 181 minutes on divided roads 

(59 cases). This is likely due to the fact that incidents on not-divided roads tend to be 

more severe than those on divided roads. This is supported by the statistical results that 

the percentage of head-on or head-on-left-turn collisions among all types of collisions on 

not-divided roads is nine percent higher than that on divided roads. 
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Table 6.3 Estimated Multiple Linear Regression Model for Fatality Incidents 
 
Incident Duration (mins) = 216.36 + 88.31*Ratio_Total_Bk – 22.50*Rd_Div  
                                           (6.86)      (3.29)                              (-2.68) 
                                            

        + 76.18*Coll_Type_HOLT – 33.69*Rd_Others 
                                              (2.96)                                 (-1.81) 
 

Note : Numbers in parentheses are t-statistic values 

 

Number of observations used : 76 
R2 = 0.26 
F-value for Model = 6.32 
P-value for Model = 0.0002 
 

 

 

 

 

 

 

 

6.5 Closure 

In this advanced study, the NBC was used to identify the major variables which 

have a significant influence on fatality incident duration and to predict the most plausible 

incident durations under given conditions.  

Despite the small available sample size, the analysis results clearly indicate that 

incidents causing fatalities usually have much longer durations than those of other natures 

<Legend> 
Incident Duration : Fatality incident duration in minutes 
Ratio_Total_Bk : Number of lanes blocked in both directions/Total Number of lanes in 

both directions 
Rd_Div : Road Division Conditions 
 1 if not divided 
 2 if one-way road or street 
 3 if divided with no barrier 
 4 if divided with barrier 
Coll_Type_ HOLT : 1 if a collision type is Head-on or Head-on-Left-Turn; 0 otherwise 
Rd_Others : 1 if an incident occurred on non-major roads; 0 otherwise 
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and that their durations are distributed over a wide range. On the other hand, the 

frequency of fatality incidents is far less than those of other types. Thus, it is quite 

difficult to collect a sufficient sample size for model development and validation.  

The NBC model developed from this study showed satisfactory performance, 

achieving 79 percent and 60 percent accuracy in the model calibration and validation 

processes, respectively. Although the model was developed based on a relatively small 

sample, it outperformed some conventional models developed using the same data set.  

 Due to the complex nature of incident durations and associated factors, the 

research team fully recognizes that much remains to be done to produce a more reliable 

and generalized model for predicting fatality incident durations. This study, however, 

provides a preliminary model and results to enable state highway agencies to estimate the 

approximate delay from, and the potential impact area of, an identified fatality incident, 

which should help when assessing the need to implement a detour plan. 
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Chapter 7: Application of Incident Duration Models: Estimations 
of Incident-Induced Delay and Queue 

7.1 Introduction 

Freeway incidents, regardless of severity, are the primary contributors of traffic 

congestion in most urbanized areas. Unexpected delays caused by freeway incidents 

affect the daily travel time variability, and consequently may significantly influence a 

driver’s decision about route choices, departure time, and mode choices. The unpredicted 

delay of travel will inevitably increase the commuting cost of drivers. 

In highway traffic management, the most significant indicators to measure the 

impacts of incidents are the delay and the resulting queue length. Information associated 

with delay and queue can also be used for transportation planning at different levels. 

Transportation agencies responsible for incident management can use such indicators to 

implement the most cost-effective strategies. In fact, the delay data have evolved as the 

most critical factor for estimating traffic and economic impacts due to incidents, such as 

increased fuel consumption, increased emissions, and increased air pollution. 

This chapter presents the estimation of incident-induced delay and its queue 

length using a data set generated from CORSIM. We explore factors contributing to delay 

and queue, and present preliminary models for estimating the total vehicle delay and the 

resulting queue to the incident.  

7.2 Methodology 

7.2.1 Experimental Design 

 This study simulated the I-495 network with CORSIM. The entire network, a 

four-lane loop format highway which includes no lane drops, grades or any other local 
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bottlenecks, was chosen in order to generate delay and queue solely due to incidents. 

Delay and queue are computed based on the congestion caused by one isolated incident. 

In addition, the delay and queue in the opposite direction due to the rubbernecking factor 

were not considered in this study. 

7.2.2 Description of Variables 

 To identify factors contributing to the delay and queue induced by incidents, the 

experiment explored a number of related variables and their possible range of variation. 

A list of these variables is presented below. 

• Incident duration (in minutes)  
o Minor (less than 30 minutes): 5, 15, 25 
o Moderate (30 mins to 60 mins): 35, 45, 55 
o Severe (> 60 mins): 65, 75, 85 

• One main lane closure scenario 
o lane 1, lane 2, lane 3, or lane 4 

• Two main lane closure scenario 
o (lane 1, lane 2), (lane 1, lane 3), (lane 1, lane 4), (lane 2, lane 3), (lane 2, 

lane 4), or (lane 3, lane 4) 

• Three main lane closure scenario 
o (lane 1, lane 2, lane 3), (lane 1, lane 2, lane 4), (lane 1, lane 3, lane 4), 

(lane 2, lane 3, lane 4) 

• Main lane volume: 1000, 3000, 5000, 7000, or 9000 vph 

• On-ramp volume: 1000, 1200, 1400, 1600, 1800, 2000 vphpl  

• Off-ramp volume ratio: 5 percent, 10 percent, 15 percent, 20 percent, or 25 
percent 

 
• Heavy vehicle factors: 5 percent, 10 percent, 15 percent, or 20 percent 

• Rubbernecking proportion: 0 percent, 20 percent, 40 percent, 60 percent, 80 
percent 
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• Incident impact length (in ft) 
o 50: minor incident (e.g., disabled vehicles) 
o 100: moderate incident (e.g., two-vehicle collisions) 
o 150: semi-severe incident 
o 200: severe incident (e.g., several injuries or fatalities) 

• Incident location 
o Before passing off-ramp (1/3 mile away from the off-ramp) 
o Near off-ramp (±0.05 mile from ramps) 
o Between on- and off-ramps 
o Near on-ramp (±0.05 mile from ramps) 
o After passing on-ramp (1, 2/3, or 1/3 miles away from the on-ramp) 

As described in the above list, all lane blockages were excluded from this study 

due to their unusual impact. Lane blockage was also specified in terms of the lane ID; 

that is, scenarios were discerned on the basis of which lanes out of the four lanes 

available were blocked. Lane IDs are illustrated in Figure 7.1. Scenarios generated for 

lane blockages did not regard shoulder blockages, because CORSIM does not have a 

function to reliably capture a shoulder blockage. 

The incident impact length was estimated based on the number of vehicles 

involved and the incident management vehicles. For instance, if a police car, an 

ambulance, and two wreckers were dispatched to manage the incident of a two-vehicle 

collision, the impact of the incident would be represented approximately by 140 feet in 

length, considering that each vehicle is 20 feet long. To examine the contribution of 

incident locations on delay, scenarios were also distinguished by locations where the 

incidents occur.  



 

 133

 

Figure 7.1  Illustration of Lane IDs  

7.2.3 Model Development and Results  

Total Delay Estimation 

 In CORSIM, to develop a model for computing the total delay, one first selects a 

set of variables of different ranges using the random sampling procedure. Delay 

calculated from the CORSIM output is the sum of delays that a vehicle has experienced 

due to an incident. It is computed based on the definition that delay is the difference 

between the free-flow and incident-incurred travel times over the same highway segment.  

 Based on 380 samples acquired from the CORSIM output, a regression model 

was developed to estimate/predict the total delay. Table 7.1 summarizes the estimated 

results.  

All parameters of the proposed model of 13 variables were significant at the 5 

percent significance level with reasonable signs. The measure of the goodness of fit of 

the model (R2 ) was approximately 0.83, which indicates that the developed model 
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explained about 83 percent of samples used for the model calibration. Since simulated 

total delays follow a log-normal distribution, a natural logarithm form of the total delay 

in minutes was used as the dependent variable. 

 As expected, the model shows that the most significant variable was the incident 

duration that had the t-statistic value 27.69, representing the significance of this variable. 

These estimation results justified the need to have reliable estimation of incident 

durations so as to increase the robustness of estimating the incident-induced delay.  

 As revealed in the model, traffic volume and related factors exhibited significant 

impacts on the total delay. For instance, an increase in high-heavy vehicles and a high 

ratio of through traffic would directly increase the resulting delay during any incident.  

One interesting finding in this regard is associated with where the incident 

occurred. As presented in the previous section, different scenarios were generated in 

terms of incident locations. For example, considering that the segment between two exits 

is 1.5 miles long on average, the incident scenarios were generated at five different 

locations; (1) before passing the off-ramp, (2) near the off-ramp, (3) between the off-

ramp and the on-ramp, (4) near the on-ramp, and (5) after passing the on-ramp. Figure 

7.2 illustrates the relative locations of these five scenarios defined in this study.  
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Table 7.1 Estimated Regression Model for Incident Induced Delay 
 
 
Log(delay(mins)) = - 3.4204+ 0.0723*HeavyVeh + 0.0008*Main_Vol + 0.0297*Thru_Rt + 0.0596*Inc_Dur + 0.6124*Away_On  
                                  (-4.81)    (7.20)                        (27.01)                      (3.84)                      (27.69)                   (5.56) 

         
           + 1.9102*LnB1 + 1.6571*LnB2 + 1.3205*LnB3 + 1.0366*LnB4 + 0.4903*LnR1 + 0.3225*LnR2 + 0.5105*LnR3  
                                  (14.26)                (12.61)               (9.89)                (7.97)                 (3.24)                (2.12)                 (3.24) 
                                 
          + 0.3402*LnR4   
                                  (2.22)                   
 
=============================================================================================== 
 
Number of observations used : 380 
R2 = 0.8330 
F-value for Model = 140.39 
P-value for Model = < 0.0001 
 
Note : Numbers in parentheses are t-statistic values 
 
 
 
 
 
 
 

<Legend> 
HeavyVeh : Heavy vehicle factor 
Main_Vol : Volume on four main lanes (vph) 
Thru_Rt : Ratio of through traffic at an off ramp (100-(off-ramp volume ratio))
Inc_Dur : Incident duration in minutes 
Away_On : 1 if an incident occurred at least 1/3 miles away after passing an 
on-ramp; 0 otherwise 
LnB1 : 1 if Lane 1 is blocked due to the incident; 0 otherwise  
LnB2 : 1 if Lane 2 is blocked due to the incident; 0 otherwise 
LnB3 : 1 if Lane 3 is blocked due to the incident; 0 otherwise 
LnB4 : 1 if Lane 4 is blocked due to the incident; 0 otherwise 
LnR1 : 1 if Lane 1 has a rubbernecking effect due to the incident; 0 otherwise 
LnR2 : 1 if Lane 2 has a rubbernecking effect due to the incident; 0 otherwise 
LnR3 : 1 if Lane 3 has a rubbernecking effect due to the incident; 0 otherwise 
LnR4 : 1 if Lane 4 has a rubbernecking effect due to the incident; 0 otherwise 
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The t-statistic result stated that the location factor was meaningful only when an 

incident occured somewhere in the downstream of an on-ramp, which is defined as Area 

5 in Figure 7.2. The positive sign of its estimated parameter implied that the total delay 

caused by an incident was highly likely to increase when the incident occured somewhere 

after passing the on-ramp and before reaching the next off-ramp. This may be attributed 

to the fact that the traffic volume after passing the on-ramp generally increases by the in-

flow volume from the on-ramp. 

 

Figure 7.2  Illustration of the Network Unit Used for This Study 

The model also reflected an interesting statistical result regarding the lane 

blockage and rubbernecking effects. It revealed that, all other conditions being equal, the 

actual impact of an incident may vary with its lane location. As shown in Table 7.1, the 

closure of Lane 1 had the most significant influence on delay, whereas Lane 4 had the 

least impact, as it is close to the median. In most conditions, Lane 1 is the slowest lane — 

since most conservative drivers take this lane for better safety, and it interacts with on- 

and off-ramps via the weaving areas — while Lane 4 is the fastest lane occupied by 

aggressive drivers. Conservative drivers generally take a longer time in changing lanes 

Area 1
Area 2 Area 3 

Area 4 

Area 5

Unit (about 1.5 miles) 
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and demand wider gaps. The impact of such behavioral patterns becomes evident when 

Lane 1 is unexpectedly closed due to an incident: these conservative drivers generally 

exhibit some difficulty in finding acceptable lane-changing gaps.   

Similarly, the most significant rubbernecking effects were those occurring in Lane 

1. However, unlike the lane blockage factor, no systematic pattern can be observed 

among different lanes. 

 

Queue Length Estimation 

 Queue, in this study, is defined as the length of the maximum spillback due to 

incidents. Based on the shockwave theory, the maximum spillback would occur at the 

moment that all closed or restricted lanes caused by incidents are recovered to normal 

conditions. Vehicles showing a mean speed lower than 20 mph are viewed as being part 

of the incident-induced queue, which is used as the criterion to determine the maximum 

queue length. 

To acquire simulated data for the maximum queue lengths from CORSIM, 

detectors were placed on the network to detect the breakpoint where the traffic flow 

speed was greater than 20 mph. Also, the distance from the incident site to the breakpoint 

was measured as the incident-induced maximum queue length at the moment that all 

restrictions on the roads by incidents were cleared.  

Based on 285 samples acquired from the CORSIM output, a regression model 

was developed to estimate the maximum queue length. Table 7.2 summarizes the 

estimated results.  
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Table 7.2 Estimated Regression Model for Incident Induced Queue 
 
Log(queue(ft)) = 6.6736+ 0.0191*HeavyVeh + 0.0002*Main_Vol +  0.0149*Inc_Dur + 0.1930*LnB2 + 0.1147*LnB3  
     (51.07)   (3.92)                         (15.79)                       (13.53)                   (3.32)                (1.97)                 
 

   + 0.1528*LnB4 + 1.0079*Away_Off_1/3 + 0.8094*Near_Off_Bf + 1.0020*Near_Off_Af + 0.8100*Btw_On_Off  
      (2.71)                 (7.63)                               (6.82)                             (9.23)                             (6.18) 
      
   + 0.6371*Near_On_Bf + 0.6284*Near_On_Af + 0.5501*Away_On_1/3 + 0.1604*Away_On_2/3  

                              (5.51)                            (5.66)                            (5.31)                                (1.68)                                
=============================================================================================== 
 
Number of observations used : 285 
R2 = 0.7360 
F-value for Model = 53.76 
P-value for Model = < 0.0001 
 
Note : Numbers in parentheses are t-statistic values 
 
 
 
 
 
 
 
 

 

 

<Legend> 
HeavyVeh : Heavy vehicle factor 
Main_Vol : Volume on four main lanes (vph) 
Inc_Dur : Incident duration in minutes 
LnB2 : 1 if Lane 2 is blocked due to the incident; 0 otherwise 
LnB3 : 1 if Lane 3 is blocked due to the incident; 0 otherwise 
LnB4 : 1 if Lane 4 is blocked due to the incident; 0 otherwise 
Away_Off_1/3 : 1 if an incident occurred about 1/3 miles away before passing 
the nearest off-ramp; 0 otherwise (Area 1 in Figure 7.2) 
Near_Off_Bf : 1 if an incident occurred near an off-ramp (within 500 ft) but 
before passing an off-ramp; 0 otherwise (Area 2 in Figure 7.2) 
Near_Off_Af : 1 if an incident occurred near an off-ramp (within 500 ft) but 
after passing an off-ramp; 0 otherwise (Area 2 in Figure 7.2) 
Btw_On_Off : 1 if an incident occurred somewhere between on-ramp and off-
ramp; 0 otherwise (Area 3 in Figure 7.2) 
Near_On_Bf : 1 if an incident occurred near an on-ramp (within 500 ft) but 
before passing an on-ramp; 0 otherwise (Area 4 in Figure 7.2) 
Near_Off_Af : 1 if an incident occurred near an on-ramp (within 500 ft) but 
after passing an on-ramp; 0 otherwise (Area 4 in Figure 7.2) 
Away_On_1/3 : 1 if an incident occurred about 1/3 miles away after passing 
an on-ramp; 0 otherwise (Area 5 in Figure 7.2) 
Away_On_2/3 : 1 if an incident occurred about 2/3 miles away after passing 
an on-ramp; 0 otherwise (Area 5 in Figure 7.2)
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All 14 variables included in the proposed queue model showed reasonable 

parameter signs. They were all significant at the 10 percent significance level. Similar to 

the delay model, a natural logarithm form of the maximum queues was used as the 

dependent variable, since the simulated maximum queues approximately follow a log-

normal distribution. 

Unlike the delay model, the most significant variable in this model was the 

volume in the main lanes. Incident durations also showed great significance for queue 

length estimation. The estimation results also showed that, as expected, the queue length 

would increase with the traffic volume and incident durations. 

Lane closures for Lane 2, Lane 3, and Lane 4 all had statistically significant 

impacts on the maximum queue, while rubbernecking effects had little effect. 

Interestingly, the queue model is highly sensitive to the location of the incident 

sites. Most variables defined to capture the nature of the incident location (in Table 7.2) 

had considerable significance for the model, except for the variable Away_On_1,  which 

is defined to be 1 if an incident occurred about 1 mile away after passing an on-ramp and 

0 otherwise. One can also notice that the variable Away_On_2/3 (defined in Table 7.2) 

was much less significant than other incident-location variables. In addition, variables 

indicating incident locations before reaching the next on-ramp (e.g., Away_Off_1/3, 

Near_Off_Bf, Near_Off_Af, and Btw_On_Off in Table 7.2) showed greater significances 

with higher estimated coefficients. This implies that incidents that occur before reaching 

the next on-ramp are more likely to increase the queue.  
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7.3 Applications of Developed Models 

 Note that one can apply the delay and queue models if the incident duration and 

other traffic information are available from any source. The CHART-II database would 

be the main source for the information needed to estimate the incident duration and to 

perform the delay and queue estimations. Additional data required for executing the 

models are the heavy vehicle factor, traffic volume in the main lanes and at ramps, 

incident lane location, and rubbernecking effects on each opened lane.  

 Table 7.3 presents three examples of incidents occurring on I-495 with different 

incident natures. Incident durations were estimated based on the RBTM and supplemental 

models. When the estimated/predicted incident duration is an interval output, the value of 

the middle point of the range would represent the incident duration and be used as an 

input for delay and queue models. For instance, in the second example, the estimated 

incident duration was 10 to 35 minutes. The middle point of the incident duration interval 

— that is, 22.5 minutes — would be used as the input for the delay and queue estimation 

models. 

 The first example shows how severe the impact of the fatality incident would be 

in terms of delay and queue. The total delay experienced by all vehicles on the highway 

due to the fatality incident would have been much larger than the delays from other 

natures of incidents, as shown in the table. Similarly, the maximum queue length of the 

fatality incident would be approximately four times larger than that from the CPI. The 

relative scales of the predicted results from these examples seem consistent with field 

observations.  
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Table 7.3  Model Applications of Incident Duration, Delay and Queue 
 

Example No 1 2 3 

Event Open  
Date & Time 

2006-03-25 
14:14:33 

2003-07-02 
18:33:52 

2006-02-02 
08:57:28 

County Prince George Montgomery Montgomery 

Incident Nature CF CPI OTHERS 
(Vehicle Fire) 

Road Info I-495 IL I-495 IL I-495 OL 

Exit No 23 41 38 

Weekend 1 0 0 

Peak Hour 0 0 1 

Heavy Vehicle Factor 11% 12% 10% 

Volume in Main Lanes 6200 7000 7600 

Thru Traffic Ratio 90% 90% 90% 

Lane Blockage Info Ln 1 and 2 Ln 1 
None  

(Shoulder 
Blockage) 

Lane Restriction Info Ln 3: 80% 
Ln 4: 60% 

Ln 2: 80%  
Ln 3: 60%  
Ln 4: 40% 

Ln 1: 20% 

Incident Location Info Btw_On_Off Near_Off_Bf Away_On_1 

Observed Incident Duration 
(mins) 143.53 32.73 7.07 

Estimated Incident Duration 
(mins) 120.93 (10, 35) 19.78 

Predicted Total Delay 
(hrs)* 301,046 463 76 

Predicted Max. Queue 
(miles)* 12.6 2.9 2.4 

* Total delay and maximum queue length are predicted based on the estimated incident durations 
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Chapter 8: Conclusions 

8.1 Summary of Research Results 

This study has presented a set of models for estimating incident durations using 

the incident data from years 2003 to 2005 available in the Maryland SHA CHART II 

database. The proposed models consist of primary components developed with the Rule-

Based Tree Model and supplemental components calibrated with either multinomial logit 

or linear regression models. In conducting this study, it has been found that Incident 

Nature is the most influential factor associated with the duration of an incident; County 

emerges as the second most critical factor. The proposed RBTM has also been found to 

be quite flexible in assigning appropriate estimated incident duration ranges to nodes in 

the decision tree.  

Additionally, studies for estimating delay and queue, based on estimated incident 

durations, were conducted as a primary part of the model application using data simulated 

in CORSIM. Theses studies are essential, since the impacts of incidents must be 

identified in order to promptly implement an effective and efficient incident management 

system. This can help motorists reduce the uncertainty of travel times, diminishing the 

ensuing economic losses due to unexpected delays. As expected, incident durations 

turned out to be the most significant factor for determining incident-induced delays. 

Incident durations also played a vital role in estimating the consequent queues.  

This chapter next presents a summary of the incident duration research findings 

from both primary and supplemental models, ordered by incident nature; this is followed 

by a summary of research findings from delay and queue studies. 
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Collision-Fatality (CF) 

• The range of predicted incident durations with the RBTM for fatality-related 

incidents is likely to be wider (e.g., about 60 minutes on average) than for other 

incident types (e.g., about 25 minutes in Collision-Personal Injury). However, the 

confidences for most of the rules were acceptable, since most of them were 

greater than or equal to 70 percent.  

• For example, with the data set from years 2003 to 2005, the RBTM predicted with 

75 percent confidence that the durations of incidents occurring on weekdays 

without the involvement of tractor-trailers would be between 100 and 200 

minutes. It also predicted with 94 percent confidence that when fatality-related 

incidents occurred on weekends, their durations would be between 80 and 200 

minutes.  

• The multiple linear regression model, which is the supplemental model for 

predicting durations of incidents causing fatalities, can achieve about 75 percent 

accuracy. 

• The clearance operation is generally more efficient in the scenarios where more 

lanes in the same direction (including shoulder lanes) were blocked than in 

scenarios leaving them open. The impact of wet pavement, a proxy variable for 

rainy days, was also found to have a negative correlation with the durations of 

incidents resulting in fatalities. 

• Advanced research was carried out to enhance the model by integrating the 

CHART database with the Accident Report database managed by the Maryland 

State Police Department. The integrated database includes more specific 
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information regarding the severity of fatality-collisions, such as the number of 

fatalities and injuries for pedestrians or driver/occupants. 

• The NBC was adopted in the advanced research, and it demonstrated accuracy of 

78.9 percent and 60.0 percent for predicting incident durations in the estimation 

and validation sample sets, respectively. Although it was developed from a fairly 

small sample, this model has shown promise of being more suitable for incident 

duration data featuring wide distribution ranges and small sample sizes, e.g., 

fatality incident durations.  

Collision-Personal Injury (CPI) 

• Most rules having terminal nodes in RBTM can predict the range of incident 

duration within 30 minutes with a confidence exceeding 70 percent. 

• RBTM can predict incidents occurring in Montgomery County causing less than 

three blocked lanes (including one blocked lane in the opposite direction) within a 

range of 10 to 30 minutes with approximately 85 percent confidence. For 

incidents without lane blockage in the opposite direction but involving single-unit 

trucks, the predicted duration of 25 to 50 minutes can be achieved with about 81 

percent confidence. 

• The probabilistic distribution of incident durations predicted with multinomial 

logit (MNL) models differs from the observed data by less than 10 percent .  
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Collision-Property Damage (CPD) 

• Most rules in RBTM can achieve satisfactory results, such that the interval of 

predicted incident duration is within the range of 30 minutes and with 70 percent 

confidence.  

• Incidents not involving tractor-trailers and resulting in only property damage have 

been predicted to last up to 30 minutes with 75 percent confidence.  

• The predicted probabilistic distribution of incident duration with MNL models as 

the supplemental component is within 5 percent difference from the observed 

data. 

Disabled Vehicles 

• Most of the incidents caused by disabled vehicles (83.3 percent for Montgomery 

County alone) lie in a relatively short range of 5 to 30 minutes.  

• Since about 84  percent of incidents in Montgomery County due to disabled 

vehicles had durations in the range of 5 to 30 minutes, one can use this simple 

rule to predict their resulting duration. Furthermore, based on the rules in RBTM, 

the durations of disabled vehicle-related incidents occurring on weekends in 

Montgomery County would be in a range of 5 to 25 minutes with 82 percent 

confidence. 

Others (Debris, Fire, Police Activity, Emergency Road Work, or Off-Road Work) 

• Due to the limited sample data in this category, the development of a reliable 

RBTM was particularly challenging. In addition, more than 50 percent of rules 
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could not be validated. Nevertheless, except for some rules with small sample 

sizes, the overall performance of RBTM was promising.  

• Using the multiple linear regression model as a supplemental component for this 

category worked quite well. It predicted that the durations of incidents caused by 

Other types of incidents would fall in the range of 30 minutes with an 81 percent 

accuracy level. 

Delay and Queue 

• To estimate incident-induced delay and queue, this study successfully developed 

regression models with R2 (the goodness of fit of a model) of 0.83 and 0.74 for 

delay and queue models, respectively. In both models, the incident duration and 

traffic volume in main lanes emerged as the most dominant factors.  

• In the delay model, detailed information related to lane blockages and restrictions 

(rubbernecking effects) identified themselves as significant contributing factors. 

Also, if the incident occurs at locations downstream from an on-ramp, the total 

delay is likely to increase. 

• On the other hand, the maximum queue length was relatively less sensitive to lane 

restrictions, while detailed information associated with incident locations had a 

great influence on the resulting queue length. 

• Even though these proposed models are preliminary in nature, they offer a 

potentially useful set of tools for SHA to effectively manage incidents and to 

inform drivers in a timely manner.  
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8.2 Future Research 

Developing reliable models for prediction based on field data is always a 

challenging task. It generally takes time to collect sufficient high-quality samples for 

model calibration. Besides, identifying outliers of samples requires in-depth knowledge 

about the environment of data collection and about the fundamental relationship between 

factors and predicted variables. To contend with the complex nature of incident duration 

prediction, this study has proposed the integrated application of three different models — 

the RBTM, the multinomial logit model and the multiple linear regression model — 

which, based on the available data, seem to yield quite promising results. 

Moreover, advanced research for fatality incidents using the integrated database 

was been conducted to enhance model performance. To illustrate the potential model 

applications, this study further calibrated delay and queue length models for a detected 

incident with an estimated duration. 

However, due to the variety of factors that may contribute to the resulting 

duration of a detected incident, much remains to be done to produce a reliable and 

generalized prediction model for use in practice. Some further research needs are 

summarized below. 

• An alternative approach with additional data is needed to develop a more reliable 

model for predicting incident durations, since the CHART database contains 

information mainly about operations but not other safety factors. 

• For incidents resulting in fatalities, it is essential to integrate the CHART 

database with police accident reports to construct an integrated data set with 

better quality for calibrating models of incidents involving fatalities. 
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• To implement integrated models of incident duration and the resulting 

delay/queue, having the database archive traffic conditions at the moment that an 

incident has occurred is recommended. 
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Appendix 1 
 

Table A1.1 Summary of Results of MCA 

Dimension Largest Coeff. Value Meaning of Variables (Categories) 
1 noodlb2+ 2.03692 No of Lane Blockage for Opposite 

Direction(>=2) 
2 noodlb2+ 1.45660   
3 nosut2+ 2.18925 No of Single Unit Trucks Involved(>=2) 
4 nosut1 1.97307 No of Single Unit Trucks Involved(=1) 
5 nosdlb3+ -1.51015 No of Lane Blockage for Same Direction(>=3) 
6 nosdlb2 1.92873 No of Lane Blockage for Same Direction(=2) 
7 extranr1 -2.11342 Incident Nature-Extra 
8 road5 1.92107 Regrouped Road : Group 5 (I-68)  
9 road5 -1.66567   
10 cf1 2.63923 Incident Nature-Collision_Fatality 
11 road5 -4.29491   
12 road5 7.04303   
13 road5 5.55222   
14 nosut2+ 3.68769   
15 road5 -3.78040   
16 road5 -7.71557   
17 road5 2.77578   
18 road5 8.69242   
19 cf1 -2.16741   
20 noodlb2+ 4.21256   
21 road5 -2.83608   
22 road5 -3.62245   
23 extranr1 1.37016   
24 cf1 3.72513   
25 road5 2.95051   
26 nshdlb2+ -2.05738 No of Shoulder Blockage(>=5) 
27 nopuv2+ 2.15205 No of PickUp Van Involved(>=2) 
28 novi1 -0.48775 No of Vehicles Involved(=1) 
29 shdb0 0.41488 Shoulder Blockage Indicator(=0) 
30 nosdlb2 -0.55401   
31 nosdlb3+ 0.27334   
32 nottlb3+ -0.14306 No of Total Lane Blockage(>=3) 
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Figure A1.1 The Quantile-Quantile Plot (Q-Q Plot) of the Original Incident Duration 
Data Set – Log-normal Distribution  
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Figure A1.2 The Quantile-Quantile Plot (Q-Q Plot) of the Original Incident Duration 
Data Set – Weibull Distribution 
 

 



 

  152

Figure A1.3 The Quantile-Quantile Plot (Q-Q Plot) of the Box-Cox Power 
Transformed Data Set 
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Figure A1.4 The Probability Plot (P-P Plot) of the Box-Cox Power Transformed Data 

Set 
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Figure A1.5 The Quantile-Quantile Plot (Q-Q Plot) of the Power Transformed Data 
from the Truncated Data Set (Incident Duration >= 5 minutes) 
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Figure A1.6 The Probability Plot (P-P Plot) of the Power Transformed Data from the 
Truncated Data Set (Incident Duration >= 5 minutes) 
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< SAS Output for the Basic Statistical Measures Using the Power Transformed Data Set> 
 

 

 

< SAS Output for the Hypothesis Tests Using the Power Transformed Data Set > 
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<SAS Output for the Basic Statistical Measures and Hypothesis Test Statistics Using the 
Power Transformed Data from the Truncated Data Set (Incident Duration >= 5 minutes)> 
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Figure A2.1  Rule Based Tree Model for Collision-Fatality in Montgomery County  
* Numbers in bold italics are based on the dataset from year 2003 to year 2005, while numbers in italics are based on dataset from year 2006.
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Figure A2.1(a)  Rule Based Tree Model for Collision-Fatality in Montgomery County (Cont’d)
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Figure A2.1(b)  Rule Based Tree Model for Collision-Fatality in Montgomery County (Cont’d)
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Figure A2.1(b)-1 Rule Based Tree Model for Collision-Fatality in Montgomery County (Cont’d)
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Figure A2.1(c)  Rule Based Tree Model for Collision-Fatality in Montgomery County (Cont’d)
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Figure A2.1(d)  Rule Based Tree Model for Collision-Fatality in Montgomery County (Cont’d)
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Figure A2.2   Rule Based Tree Model for Collision-Personal Injury in Montgomery County 
* Detailed trees for subsets for CPI-Sub-Model-I, II and III could be found in Table A2.2(a), A2.2(b) and A2.2(c), respectively, in Appendix 2. 
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Figure A2.2(a)  Rule Based Tree Model for Subsets for CPI-Sub-Model I  



 

  167

 
Figure A2.2(b)  Rule Based Tree Model for Subsets for CPI-Sub-Model II 
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Figure A2.2(b)-1  Rule Based Tree Model for Collision-Personal Injury in Montgomery County 
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Figure A2.2(c)  Rule Based Tree Model for Subsets for CPI-Sub-Model III 
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Figure A2.2(d)  Rule Based Tree Model for Collision-Personal Injury in Montgomery County 
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Figure A2.3   Rule Based Tree Model for Collision-Property Damage in Montgomery County 
* Detailed trees for subsets for CPD-Sub-Model-I and II could be found in Table A2.3(a) and A2.3(b), respectively, in Appendix 2 
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Figure A2.3(a)  Rule Based Tree Model for Subsets for CPD-Sub-Model I 
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Figure A2.3(b)  Rule Based Tree Model for Subsets for CPD-Sub-Model II 
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Figure A2.3(c)  Rule Based Tree Model for Collision-Property Damage in Montgomery County 
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Figure A2.3(d)  Rule Based Tree Model for Collision-Property Damage in Montgomery County 

2/2   100% 

29/30   96.67% 
14/16    87.50% 

9/13   69.23%       4/8   50% 

14/17     82.35% 
6/8 75.00%

10/12     83.33% 
6/8         75.00% 

7/9     77.78% 
0/1       0.00%

2/2     100% 
3/3     100%

1/1     100% 

5/7   71.43%      
3/3   100% 

4/4    100%        
2/6   33.33% 

1/1     100%       
0/0    N/A 

3/3     100% 
0/5        0% 

12/14     85.71% 
4/7        57.14% 

5/5     100% 
1/1     100% 

No. Pickup Van 
Involved = 1 

74/90   82.22% 

Shoulder is 
Blocked 

Shoulder  
is Not 
Blocked 

No. of Vehicles 
Involved <= 1 

No. of Vehicles 
Involved = 2 

No. of Vehicles 
Involved >= 3 

Road = I-495 

Road = I-270 

Pavement is Not 
Snow 

Pavement is Snow 

No. of Total Lanes 
Blocked = 1

No. of Total Lanes 
Blocked >= 2

Is Not in Peakhour 

Is in Peakhour 

Is Not in 
Peakhour 

Is in Peakhour 

Road = I-495 IL 

Road = I-270 

Road = I-495 OL 

Ratio of Total Lanes 
Blocked<0.5 

Ratio of Total Lanes 
Blocked >= 0.5

22/25   88.00% 
 8/13   61.54% 

No. of Total Lanes 
Blocked = 0

19/24   79.17% 
12/17    70.59%

9/11   81.82% 
2/4    50.00%

5 ~ 30 mins 

5 ~ 30 mins 

5 ~ 15 mins 

5 ~ 20 mins 

5 ~ 30 mins 

10 ~ 20 mins

50 ~ 110 mins

5 ~ 25 mins

5 ~ 25 mins

5 ~ 20 mins

10 ~ 30 mins

30 ~ 45 mins

5 ~ 40 mins

5 ~ 30 mins

5 ~ 30 mins

5 ~ 25 mins 

5 ~ 25 mins 

20 ~ 45 mins 

5 ~ 30 mins 

52/65   80.00% 
 26/37   70.27% 

 

0/0     N/A 

0/0    N/A 

<Legend> 
Support/Total       Confidence 



 

  176

 
Figure A2.3(e)  Rule Based Tree Model for Collision-Property Damage in Montgomery County 
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Figure A2.4   Rule Based Tree Model for Disabled Vehicles in Montgomery County
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Figure A2.4   Rule Based Tree Model for Other Incident Natures in Montgomery County
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Figure A2.4(a)  Rule Based Tree Model for Other Incident Natures in Montgomery County (Cont’d) 
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