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Chapter 1: Introduction 

 

1.1 Background 

Due to the increasing congestion in most urban networks, providing reliable 

trip times to commuters has emerged as one of the most critical challenges for all 

existing advanced traveler information systems (ATIS). However, predicting travel 

time is a very complex and difficult task, as the resulting accuracy varies with many 

variables of time-varying nature, including the day-to-day traffic demands, responses 

of individual drivers to daily commuting congestion, conditions of the road facility, 

weather, incidents, and reliability of available detectors. To contend with these issues, 

transportation professionals have proposed and implemented a variety of systems for 

providing travel times in the past two decades. However, most real world systems 

provide travel times based on only the current traffic conditions, not the predicted 

travel time for en-route trips or for pre-trip planning. 

Traditionally, travel time prediction models are based on historical travel 

times concurrently collected by various measurement systems such as electronic toll 

systems or vehicles with GPS systems. However, due to the high costs associated 

with collecting a large sample with such systems, most models developed for travel 

time prediction have not been implemented in practice. 

As an alternative, considerable efforts are found in the literature to estimate 

travel times from traffic detectors, which are relatively cost-effective for 
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implementation in practice, but demand some advanced theoretical models to produce 

the predicted travel time from limited point measurement information offered by 

detectors under the potential impacts of various critical factors. 

For example, to formulate a reliable travel time model for prediction, one 

needs to be able to reliably capture the traffic dynamics between detector stations. 

The complexity of such a task increases with the distance between detectors, and the 

percentage of missing or faulty data during the detection period. The prediction shall 

also take into account the future traffic demand generated to the downstream 

segments of en-route trips, as the surge in volume in the projected time horizon may 

incur the traffic congestion that is difficult to be estimated with the data from the 

existing detectors. To reliably predict the future time-varying traffic demand, 

however, is also quite a complex task, and it necessitates the proposed model not only 

to best use the available historical data, but also to dynamically account for the day-

to-day variation due to the experience of drivers or their responses to the perceived 

traffic conditions. 

In brief, the complex interrelations between detector hardware, historical data, 

and traffic flow dynamics have made the prediction of travel time one of the most 

challenging tasks in ATIS. This is also one of the primary reasons that most ATIS for 

highway systems only provide estimated travel times based on the current traffic 

condition. 

1.2 Research Objectives 

Theoretically, a cost-efficient travel time prediction system ready for use in 

practice on freeways should have the following desirable features: 
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• The required input variables should be obtainable from traffic detectors, 

which may be sparsely distributed. 

• The system may take advantage of some actual travel times from the field, 

but not rely on a large number of such data. 

• The system should be capable of operating under non-recurrent congestion 

conditions and effectively dealing with related issues during real-time 

operations. 

Intending to embody all the above desirable features in the proposed travel 

time prediction system, this study has the following principal objectives: 

• Develop a travel time estimation module to provide reliable estimates of 

completed trips under all types of recurrent traffic patterns with sparsely 

distributed traffic detectors. 

• Construct a travel time prediction module for freeway segments with a 

large detector spacing, and take full advantage of historical travel times 

and traffic patterns. 

• Integrate a missing data estimation module to deal with various missing 

data patterns that often occur in a real-world system. 

• Calibrate an incident detection module to switch the travel time prediction 

system to a different mode (i.e., display delay warnings instead of 

predicted travel times) when an incident has been detected. 
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1.3 Organization of the Report 

Based on the proposed research objectives, this report consists of eight 

chapters. The interrelations among those tasks are illustrated in Figure 1.1. A brief 

introduction of each completed chapter is presented next. 

Chapter 2 presents a comprehensive review of literature related to the travel 

time prediction system, including travel time estimation models, travel time 

prediction models, and simulated/real-world systems. Advantages and limitations of 

those models with respect to their potentials for use in a real-world system with 

sparsely distributed detectors are also discussed in this chapter. 

The primary task of Chapter 3 is to introduce the framework of the proposed 

travel time prediction system with sparsely distributed detectors. The system’s 

flowchart and its operational logic will be presented in detail in this chapter. The 

proposed travel time prediction system consists of four principal modules: travel time 

estimation module, travel time prediction module, missing data estimation module, 

and incident detection module. 

Chapter 4 focuses on developing a hybrid travel time estimation model on a 

freeway with sparsely distributed detectors. The proposed hybrid travel time 

estimation model employs a clustered linear regression model as the main model and 

an enhanced trajectory-based model as its supplemental model to circumvent the 

limitations on long links identified in the literature review. To contend with the 

impacts due to various geometric features and traffic patterns, the hybrid model first 

categorizes traffic conditions into pre-specified groups, and then applies the 
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Figure 1.1 Interrelations between primary research tasks 

Introduction 

Literature Review 

Travel Time Estimation Module 
• A clustered linear regression model as the main 

model 
• An enhanced trajectory-based model as the 

supplemental model 

Travel Time Prediction Module 
• A k-Nearest Neighbor model as the main model 
• An enhanced time-varying coefficient model as 

the supplemental model 
• Candidate Neural Network models 

Incident Detection Module 
• Single-variable algorithm for detecting incident 

near a detector station 
• Dual-variable algorithm for detecting incident far 

from both detectors in a long segment 

Implementation Procedures and System Evaluation 
• Three stages of system implementation 
• Evaluation of predicted travel times 

System Architecture 
• System flowchart at the model-training stage and 

real-time operation stage 
• Interrelations between four principal system 

modules 

Conclusion 
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linear regression model to clusters with a sufficient size of sample travel times. The 

enhanced trajectory-based model takes strengths of both traffic propagation relations 

and piecewise linear speed-based model to provide the reliable estimation of travel 

times for clusters without sufficient samples. 

Chapter 5 proposes a hybrid travel time prediction model for freeway 

segments with widely spaced detectors. The hybrid travel time prediction model takes 

full advantages of a k-Nearest Neighbor model and an enhanced time-varying 

coefficient model to provide reliable travel time prediction under recurrent congestion 

patterns. The k-Nearest Neighbor model, which is the main model of the hybrid 

model structure, has been modified and modeled to take into account traffic 

characteristics as well as both daily and weekly traffic patterns. An enhanced time-

varying coefficient model serves as the supplemental component to deal with the 

traffic scenarios that do not have sufficient similar cases in the historical database. 

This enhanced time-varying coefficient model functions to predict travel times, based 

on the improved preliminary estimates derived from the daily and weekly traffic 

patterns. 

Chapter 6 details the incident detection algorithms employed in this study to 

contend with nonrecurrent congestion patterns. Its interrelations with the developed 

algorithms for travel time estimation and prediction constitute the core of this chapter. 

The proposed module consists of two components: a single-station incident detection 

algorithm for detecting incidents near one detector station and a dual-station incident 

detection algorithm for detecting incidents far from either detector. When a major 

incident is detected, the incident detection module will inform the travel time 
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prediction system to switch to a different operation mode (i.e., displaying congestion 

warning messages) for the impacted links. 

Chapter 7 reports the system demonstration on the I-70 freeway segment 

between MD27 and I-695. The presentation includes the pre-deployment system 

calibration, on-line system demonstration, and off-line system evaluation and model 

revision. A step-by-step description of the system deployment procedures for field 

demonstration is the main focus of this chapter. Field evaluation results for travel 

time prediction will also be discussed in this chapter. 

Chapter 8 summarizes the research findings for this study and reports some 

critical issues to be addressed in the future development of such a system; 

recommendations for further system enhancement and full-scale deployment will also 

be addressed in this chapter. 
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Chapter 2: Literature Review 

 

2.1 Introduction 

Most existing studies associated with providing trip travel times on freeways 

can be classified into two categories: travel time estimation and travel time 

prediction. The former studies are used to estimate travel times from the traffic data 

collected during the time in which the trip has been completed. This type of study is 

essential for a travel time prediction system, which does not directly measure travel 

times. In contrast, travel time prediction models are for trips that have not departed 

and will be completed in the future. Thus, future traffic conditions have to be 

predicted, which makes predicting travel time a challenging task. Embedding a 

missing data estimation module in a travel time prediction system can significantly 

improve its reliability and functionality, the accuracy of which is frequently impaired 

by missing and/or delayed data. This section will first review travel time estimation 

models and travel time prediction models in the literature. Then it will summarize 

some systems implemented in simulated environments and in real-world applications. 

2.2 Travel Time Estimation Models 

As reported in the literature, most studies of travel time estimation fall into 

one of the following categories: flow-based models, vehicle identification 

approaches, and trajectory-based models. 
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2.2.1 Flow-based Models 

Flow-based models have been applied to freeway mainline segments without 

ramps and having uniform travel speeds across all lanes. This type of model estimates 

travel times by comparing upstream and downstream flow counts, based on the 

assumption of first depart, first arrive. For example, Dailey (1993) estimated travel 

times by using a cross-correlation technique to determine the maximum correlation 

between densities, which are computed from flow measurements.  

Nam and Drew (1996) developed a flow-based travel time estimation model 

by analyzing the number of vehicles that have entered and exited the link in the same 

time interval, )( ntm . The authors applied a stochastic process model to the upstream 

and downstream flow counts under generalized conditions of flow conservation and 

then estimated travel times for the traffic condition in which  )( ntm  is positive. A 

case study showed that the estimated average segment travel speed was consistent 

with detected upstream and downstream speeds. 

By extending Dailey’s work, Petty et al. (1998) estimated freeway travel times 

using flow and occupancy information, based on a simple stochastic model, by 

analyzing probability distributions of travel times. However, the model results have 

been verified using only the upstream detector speed, which is not sufficiently 

reliable to serve as the ground truth value of travel time. 

Liu et al. (2006) established a linear relation between travel time and the 

combination of the number of vehicles in the segment and the average downstream 

speed. To solve the model, the authors provided an iteration-based method to 

establish the interrelation between input and output variables. The estimated travel 
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times from two cases generated in a simulation environment were found to be reliable 

in two distinct types of traffic conditions. 

In comparison, existing flow-based models require uniform travel speeds 

across all lanes and therefore cannot be reliably applied to segments with ramps or 

complex traffic patterns, i.e., spillback from a downstream off-ramp. Another issue 

that makes this type of model unsuitable for real-world applications is detector errors. 

In practice, even the most advanced and properly calibrated detectors still cannot be 

guaranteed to operate at a desirable level of high detection accuracy. Unpredictable 

measurement errors for traffic count may dramatically reduce the model accuracy. 

Nam and Drew (1996) considered an hourly adjustment factor to overcome the drifted 

flow count. However, detector errors are most likely nonsystematic in nature, and the 

error patterns remain difficult to model well. 

2.2.2 Vehicle Identification Approaches 

Vehicle identification approaches estimate travel time by matching the 

sequence of vehicles in a single lane. The key concept of this type of method is to 

find vehicles’ signatures from the upstream and the downstream detectors in order to 

calculate their travel times. 

In the literature, significant efforts have been made to group vehicles into 

classes and then match their sequences to estimate travel times. These models 

(Pfannerstill, 1984; Kühne and Immes, 1993; and Kühne et al., 1997) often require 

new detection hardware that can provide additional signatures. MacCarley (1998) 

proposed a method using vehicles’ visual signatures from overhead cameras to obtain 

travel times. The evaluation results indicate that such systems can achieve a high 
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degree of accuracy in daylight, but have a low match rate and a high false-match rate 

at nighttime. 

Coifman et al. (Coifman, 1998; Coifman and Cassidy, 2002; Coifman, 2003; 

and Coifman and Ergueta, 2003) estimated travel times with a vehicle re-

identification (VRI) model, which matches the sequence of individual vehicles or a 

sub-sampling of vehicles (for example, trucks) with their occupied durations when 

they pass the upstream and the downstream loop detectors. The VRI model worked 

well under both free-flow conditions and congested conditions with a very low lane-

changing rate. It is reported that the model produces results having the same quality 

as other travel time estimation methods. However, due to its reduced detection 

resolution at high vehicle speeds, its match rate is generally quite low under free-flow 

conditions. 

In general, vehicle identification models performed well in one single lane 

with a low lane-changing rate. They cannot provide reliable travel time estimations 

for freeway segments near ramps. Using vehicles’ visual signatures may potentially 

improve the model’s ability to deal with ramp traffic. However, all VRI models 

require either improved detection technology or a high bandwidth to transfer the raw 

data needed to extract vehicle signatures, which will result in high system costs and 

long system processing times. 

2.2.3 Trajectory-based Models 

The common features of trajectory-based models are estimating temporal and 

spatial traffic conditions within a link from upstream and downstream detector data 

and drawing a target vehicle’s trajectory so as to provide the estimated travel time. 
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One of the typical studies in this category is by Coifman (2002), who 

estimated the vehicle in-segment speed based on the speed data from a detector 

placed at one end of a 1/3-mile segment and the traffic propagation relations. With 

the assumption that the traffic state at one detector location changes discretely and 

equal to vehicles’ headways, the following relations exist for the jth state with an 

assumed constant traffic propagation speed. 

cj

j
j uv

h
/1+

=τ        (2.1) 

jjj vx τ⋅=*         (2.2) 

where jτ  = the travel time; 

 jh  = the headway; 

 jv  = the vehicle velocity; 

 cu  = the traffic propagation speed; and 

 *
jx  = the distance traveled. 

 The link travel time of the kth vehicle, Tk, can then be estimated by finding the 

largest Nk to satisfy (2.3), 
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where l is the length of the link; and 

 p is a weighting factor. 

 This model assumes a constant traffic propagation speed through the entire 

link and thus is not suitable for use in some conditions, where a dramatic change in 

traffic state occurs within a link (i.e., presence of a traffic queue or delays caused by 

traffic weavings near a ramp). 

Some researchers have made efforts to use both the upstream and downstream 

detector information for estimating travel times with piecewise constant-speed-based 

(PCSB) methods (van Grol et al., 1997; Lindveld et al. 2000; and Cortes, 2002), 

which assume a constant travel speed within the link. Van Lint and van der Zijpp 

(2003) estimated travel times with a piecewise linear-speed-based (PLSB) model, 

which is reported to outperform PCSB models in simulated cases. In the PLSB 

model, the vehicle’s in-segment speed is determined by the convex combination of 

the speeds obtained at the upstream and downstream detectors at the same time as 

shown below: 

)()(),( 1
1

tv
xx

xx
tvtxv d

dd

d
d +

+ −
−

+=      (2.6) 

where x is the location of the vehicle, 1+≤≤ dd xxx ; 

v(x,t) is the estimated speed of the vehicle at location x at time t; 

 d is the detector ID; 

 vd(t) is the speed detected at detector d at time t; and 

 xd is the location of detector d. 
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Note that existing piecewise models do not consider traffic propagation 

relations, which use the detected speeds at the upstream and downstream detectors at 

the same time to estimate travel times in short segments (i.e., 0.5 miles). 

In summary, many studies use the trajectory-based models to estimate 

vehicles’ in-segment speeds, and thereby compute their travel times. This type of 

method is relatively applicable to long links and can better tolerate detector errors 

than the flow-based models. With proper modifications, this type of model has the 

potential for use on segments with non-uniform travel speeds. 

2.3 Travel Time Prediction Models 

Predicting travel times usually requires a longer prediction horizon than 

predicting traffic variables (i.e., flow and speed), because the information of travel 

times will not be available until vehicles departing at the current time complete their 

trips. Researchers over the past decades have attempted to implement both parametric 

models and nonparametric models to forecast travel times and other traffic variables. 

Among parametric models, time-series models and Kalman filter models have 

received more attention than other model structures. Some researchers have also 

devoted considerable attention to Neural Network models, one of the nonparametric 

prediction models, due to their well-known learning and pattern recognition abilities 

and their robust performance. The following section will review existing works on 

travel time prediction and other related forecasting models, including Neural Network 

models and other nonparametric models. This section will also discuss some attempts 

made by researchers to combine two or more models. 
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2.3.1 Parametric Models 

Among parametric models, time-series models are widely used in the 

transportation field for predicting traffic variables, due to the time-series nature of 

most transportation-related information. Linear regression models and time-varying 

coefficient models are reported to be efficient as well. Researchers have developed 

parametric models for travel time prediction, which are mostly for highway systems 

capable of directly measuring travel times. 

 

Time-Series Models 

In the transportation literature associated with travel time studies, the earliest 

time-series models were developed by Ahmed and Cook (1979) and Levin and Tsao 

(1980), who predicted traffic volume and occupancy with autoregressive integrated 

moving-average (ARIMA) models (Box and Jenkins, 1970). Their study showed that 

ARIMA models outperform simple smoothing methods and historical average values 

in forecasting single-detector data. They concluded that the optimal form of ARIMA 

model is site-specific. 

Given a time series of data Xt (where t is integer valued and Xt are real 

numbers), an ARIMA (p, d, q) model has the following standard form (Box and 

Jenkins, 1970): 

∑ ∑
= =

−=−−
p

i
t

q

i

i
it

di
i LXLL

1 1
)1()1)(1( εθφ     (2.7) 

where L is the lag operator, 1−= tt XLX  for all t>1; 

 tε  is the error term, ),0(~ 2σε Nt ; and 
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p, d, q are the order of the autoregressive, integrated and moving average parts 

of the model, respectively. 

Due to its strength in capturing the time-series trend, the ARIMA model is 

widely used to predict traffic volume and occupancy for a single detector location in a 

highway segment (Oda, 1990; Davis et al., 1991; Hamed et al., 1995; Smith and 

Demestky, 1996; van der Voort et al., 1996; Ishak and Al-Deek, 2002; Stathopoulos 

and Karlaftis, 2003). 

As reported in the literature, ARIMA models predict mainly the mean values 

and often fail to deal with large variations due to some congested patterns or 

incidents. Hence, seasonal ARIMA models have also been developed in various 

studies (Smith and Demetsky, 1997; Williams et al., 1998; Smith et al., 2000; Chung 

and Rosalion, 2001; Smith et al., 2002) to take into account the temporal patterns of 

the traffic data, such as weekly patterns. 

Applications of the ARIMA model in predicting travel times (Anderson, 

1995; Yang, 2005) are limited to one-link-only cases, based on collected travel times 

or detector data at both ends. The seasonal ARIMA model has not been reported to 

implement in practice for travel time prediction. 

Due to the complexity in dealing with multiple time-series datasets, time-

series models have not been successfully applied to predict travel times for trips that 

consist of several links. In contrast, nonparametric models are widely seen in this type 

of application. 
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Linear Regression Models 

There are few attempts in the traffic literature to employ the linear regression 

model in forecasting travel times. Kwon et al. (2000) developed a linear regression 

model for travel time prediction in which the independent variables are available 

occupancy, flow, departure time and day of the week. They reported that their 

proposed linear regression model performed better than both a regression-tree model 

and a Neural Network model. However, they did not discuss the most appropriate 

function forms of the departure time and day of the week. 

Due to the high uncertainty of traffic characteristics, it is difficult to fit the 

entire-day traffic pattern to a global linear regression model. Many studies have tried 

to divide the data into subsets and then employed different independent variables 

and/or varying coefficients with a linear regression structure. For example, Danech-

Pajouh and Aron (1991) developed a layered statistical approach by first clustering 

the data and then fitting each group of data to a linear regression model. 

Another category of linear models, time-varying coefficient models (TVC), 

assumes a global linear relation structure between the travel time T(t) and the status 

travel time )(* tT  with time-varying coefficients throughout the day (Zhang and Rice, 

2003). The status travel time is defined as the time needed for the current departures 

to complete their trips if traffic conditions remain unchanged and vehicles can 

maintain their speeds from one detector to its adjacent downstream detector. 
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where )(tα  and )(tβ  are time-varying coefficients; 

 D is the total number of detectors on the segment; and 

 Δ is the delay caused by data transmission. 

It is reported that the time-varying coefficient model can provide reliable 

travel time predictions under certain traffic conditions with detectors placed 1/3 to 2/3 

miles apart (Zhang and Rice, 2003; and Kwon and Petty, 2005). 

Despite the reported performance quality, there are two critical issues 

associated with the time-varying coefficient model that need to be addressed. First, 

the TVC model ignores day-to-day traffic variations and the spatial distribution of the 

congestion within each highway segment; therefore, prediction reliability may 

significantly decrease when the target traffic conditions are significantly different 

from those in the historical data. Secondly, when detectors are far apart or some 

in/out flows (i.e., ramps located between two adjacent detectors) interfere with the 

traffic patterns, a linear relation may not exist between the actual travel time and the 

status travel time originally observed in the data collected from only one site (Zhang 

and Rice, 2003). 

 

Kalman Filter Models 

With its learning ability to update parameters from real-time data, Kalman 

filter algorithm has been used by some researches in the literature to improve travel 

time and traffic pattern predictions (Okutani and Stephanedes, 1984; Whittaker et al., 

1997; Chien and Chen, 2001; Chien and Kuchipudi, 2003; Chu et al., 2005). 
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One potential issue associated with the Kalman filter model arises when 

applying the model to a long segment that has large variations in its travel times. This 

is due to the fact that actual travel times will be available only after vehicles finish 

their trips. Thus, the employed Kalman filter model may not have the actual value to 

update its parameters to contend with a dramatic change in the target time-varying 

travel time. As a result, the model’s prediction performance could be degraded 

drastically during transition periods. 

2.3.2 Neural Network Models 

The Neural Network model is one of the most popular nonparametric models 

reported in the literature on travel time predictions because of its well-known 

capability of pattern recognition and its robustness. It has been widely applied in 

many other transportation areas as well (Dougherty, 1995).  

A basic, fully connected backpropagation multilayer perceptron (MLP) 

consists of one input layer, one hidden layer and one output layer. This topology has 

been implemented to predict travel times or traffic variables in several studies (Clark 

et al., 1993; Kown and Stephanedes, 1994; Smith and Demetsky, 1994; Park and 

Rilett, 1999, Zhang, 2000; Huisken and van Berkum, 2003) and has been reported to 

achieve good performance. 

A variety of complex structures for Neural Network models has also been 

found in the literature, including MLP with a Kalman filter learning rule (Vythoulkas, 

1993), time-delay neural networks (TDNN) (Yun et al., 1997; Abdulhai et al., 1999; 

Lingras and Mountford, 2001), Jordan’s sequential networks (Yasdi, 1999), finite 

impulse response networks (Yun et al., 1997), radial basis function neural networks 
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(Park et al., 1998), multirecurrent neural networks (Park et al., 1999), modular neural 

networks (Park and Rilett, 1998), dynamic neural networks (Ishak and Alecsandru, 

2004), and partially connected MLP (van Lint, 2002), etc. 

Among these complex structures, the TDNN models have received the most 

discussion in the literature. The basic TDNN model incorporates one tapped delay 

line in the input layer to better fit the nature of the time-series data (Figure 2.1); 

therefore, input time-series data items will travel through the tapped delay line to 

provide the TDNN with a better short-term memory. One can use the 

backpropagation through time (BPTT) or real-time recurrent learning (RTRL) 

algorithms to train the TDNN either offline or online. Due to its strong short-term 

memory unit, TDNN lacks the ability to forget irregular input data. One irregular data 

point, which may be caused by either highly fluctuating traffic variables or a 

detection error, will stay and impact the prediction result in the tapped delay line until 

it reaches the end of the delay line. 

 

Figure 2.1 Example topology of a Time-Delay Neural Network 
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Except for the time-delay recurrent Neural Network models, most of such 

model structures have only been verified with data from one site. The comparison 

results of Neural Network models with other models are not consistent in the 

literature. In general, fine-tuning a Neural Network model is always time consuming, 

but critical to its performance. It may be one of the most significant factors that cause 

the poor performance of Neural Network models reported in some literature (Smith 

and Demetsky, 1996; Kirby et al., 1997). 

In the literature, many researchers have made considerable attempts to 

combine Neural Network models with other models to improve prediction reliability; 

those works will be discussed later in the section of hybrid models. 

2.3.3 Other Nonparametric Models 

In addition to Neural Network models, various nonparametric models have 

been applied to forecast travel times, traffic volumes, speeds etc., due to the fact that 

transportation-related data is often hard to fit in a pre-specified model structure. 

Commonly used nonparametric models in this area include k-Nearest Neighbor 

models, kernel models, and local regression models. 

Most nonparametric models for travel time prediction share a common feature 

— that is, to search a collection of historical observations for one or more records that 

are similar to the system’s current state and use such data to perform the prediction. 

Two classes of nonparametric models, kernel models (Nadaraya, 1964; Priestley and 

Chao, 1972; and Watson, 1964) and k-Nearest Neighbor models (Benedetti 1977; 

Stone, 1977; Tukey, 1977), are widely used (Altman, 1992), especially in the 

transportation literature (Davis and Nihan, 1991; Smith and Demetsky, 1996; Smith 
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and Demetsky, 1997; Smith et al., 2000; Oswald et al., 2001; Clark, 2003; and Rice 

and van Zwet, 2004). In the literature, some efforts have been made to use the local 

regression models (Cleveland, 1979; Cleveland and Devlin, 1988; Hastie and Loader, 

1993; and Fan and Gijbels, 1996) on forecasting as well (Sun et al., 2003; and Sun et 

al., 2004). 

A nonparametric model usually consists of three components, including a 

historical database, a search or classification procedure, and a forecast function 

(Oswald et al., 2001). With different forms of search/classification procedures and 

forecast functions, the following three types of nonparametric models are available in 

the literature: k-Nearest Neighbor, kernel and local regression models. A brief 

description of each model is presented below. 

 

k-Nearest Neighbor Models 

In a k-Nearest Neighbor model, a set of K variables is first determined in the 

search procedure to describe the system state. The similarity between two records, 

historical record p and the current case q, can be defined as their Euclidean distance, 

distEUC(p,q): 

∑
=

−=
K

i
iiEUC qpqpdist

1

2)(),(      (2.7) 

where pi is the value of the ith variable in the historical record; and 

 qi is the value of the ith variable in the current state. 

 Nonuniform weighting factors, wi, can also be used to define the distance 

between two records such as in (2.8). 
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 Other forms of distance, for example Manhattan distance and max distance, 

have also been used in the literature (Oswald, 2001). 

 In the forecast function, the k-Nearest Neighbor model takes the average of 

the top k nearest neighbors as the prediction result V̂ : 
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where Vi is the future value in the ith historical match. 

This type of forecast function is available in most transportation-related 

applications of nonparametric models. 

 As reported in the literature, k-Nearest Neighbor models are capable of 

providing reliable predictions in many transportation-related literatures (Davis and 

Nihan, 1991; Smith and Demetsky, 1996; Smith and Demetsky, 1997; Smith et al., 

2000; Oswald et al., 2001; Clark, 2003; and Rice and van Zwet, 2004). However, the 

results of performance comparisons between k-Nearest Neighbor models and other 

prediction models vary with differences in their applications. 

 Another form of forecast function includes weighting factors that are usually 

proportional to the distance between two sets of data. Smith et al. (2000) proposed 

various weighting schemes for traffic condition forecasting. 
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Nonparametric Kernel Regression Models 

With the classification function in a nonparametric model, one can apply a 

kernel function (i.e., linear, polynomial or radial basis function [RBF]) as the forecast 

function to a subset of data for predicting future values. 

Faouzi (1996) predicted traffic variables by kernel regression. As reported by 

Sun et al. (2003), one must make additional efforts to avoid frequent outputs of zero 

when applying the kernel regression model to a small database or in an application 

with frequent irregular data points. With a support vector machine (SVM) serving as 

the classification procedure, Wu et al. (2004) applied various kernel functions and 

produced reliable predictions on travel times for three long segments of between 45 

km and 350 km in distance. 

 

Local Regression Models 

The local regression model (Cleveland, 1979; Cleveland and Devlin, 1988; 

Hastie and Loader, 1993; and Fan and Gijbels, 1996) combines the simplicity of 

linear regression models and the flexibility of nonparametric models to fit a local 

segment of a dataset without a global function. As reported by Müller (1987), 

nonparametric local linear regression and nonparametric kernel regression are 

equivalent for regularly distributed data. However, local regression models can better 

handle the irregular distributed data often seen in transportation applications; 

therefore, they are more reliable than kernel regression models in a single-model 

system. 
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Similar to the time-varying coefficient models, a local regression model 

determines its data subsets by the distance of the covariates’ spaces, usually with a 

Nearest Neighbor model, instead of the departure times used in TVC models. Sun et 

al. (2003) applied the local linear regression model to predict traffic speed at one 

detector location. It is reported to achieve some improvements by incorporating an 

empirical bootstrap method (Sun et al., 2004). The prediction results are reported to 

be reliable when the prediction horizon is short (i.e., 5 to 15 minutes).  

Care must be exercised in determining two critical parameters for the 

nonparametric models: the number of input variables and the bandwidth of the 

search/classification procedure. Fan and Gijbels (1996) suggested using the basic 

cross-validation approach to determine these two parameters. However, such a 

method may not work efficiently for travel time prediction, which usually has a large 

amount of available data from multiple traffic detectors in a large time horizon. 

Analyzing other related information — for example, segment geometry and historical 

traffic patterns — may help to determine the optimal values of these critical 

parameters. 

 In the scenario where insufficient good matches are found in the historical 

database, the nonparametric model may fail to output a reliable prediction. This type 

of case exists in almost every travel time prediction system. Therefore, at least one 

alternative method is required to ensure the reliability of a travel time prediction 

system that utilizes a nonparametric model in order to deal with such situations. 
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2.3.4 Hybrid Models 

Another type of forecasting, usually referred as a hybrid method, involves the 

use of multiple models. Similar to the nonparametric approaches, hybrid methods 

generally incorporate a clustering approach and then assign one model structure to 

each cluster with locally fitted parameters. Related studies for forecasting traffic 

volume, speed or occupancy are available in the literature by Danech-Pajouh and 

Aron (1991), van der Voort et al. (1996), Abdulhai et al. (1999), Chen et al. (2001), 

Lingras and Mountford (2001), Yin et al. (2002), Ishak and Alecsandru (2004), Zheng 

et al. (2006), etc. Among the aforementioned hybrid models, those combining the 

Neural Network model with a clustering model or an improved learning model seem 

to show more potential than the others. 

In predicting travel time, some other hybrid models have also been reported in 

the literature. You and Kim (2000) proposed a combination of nonparametric model 

and machine learning to improve the accuracy of travel time predictions. Kuchipudi 

and Chien (2003) developed a travel time prediction system that switches between a 

path-based prediction model and the link-based prediction model using the Kalman 

filter algorithm. 

The most important technical issue associated with the use of hybrid models is 

the clustering criteria. Genetic algorithm (GA) and other data-driven methods have 

been reported in the literature. However, due to the impacts of site-specific factors 

such as geometry features, regional traffic patterns and driving behaviors, it is often 

difficult to have a generalized set of calibration procedures for such models to various 

locations. 
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2.4 Experimental and Real-world Application Systems 

Many experimental systems have been implemented worldwide to provide the 

travel time information for commuters. Efforts have also been made to develop 

simulated systems in laboratory environments with data from actual traffic detectors. 

A review of both types of system is reported in this section, with the focus on detector 

distribution, method to obtain travel times, and travel time prediction model. 

2.4.1 Simulated Systems 

Kwon et al. (2000) developed and tested a travel time prediction system for 

peak hours with data (flow and occupancy) from 19 detectors in each direction of a 

10-km segment of freeway. Detector data was first redistributed to ten equidistance 

virtual detector stations with interpolation. Missing values were estimated by a simple 

interpolation method to construct the dataset for model training and evaluation. Four 

traffic scenarios were identified by traffic direction and morning/evening peak hours 

to cluster the dataset. Two candidate prediction models, a tree method and a linear 

regression model, were trained with about 200 data points in each subdataset. A 

cross-validation test showed that both prediction models provided reliable travel time 

predictions with a prediction horizon of less than 20 minutes in the morning, while 

the prediction results in two afternoon datasets were not as expected. 

The system by Rice and van Zwet (2004) was based on traffic data (flow 

occupancy) collected from 116 detectors over a freeway segment of 48 miles, where 

the missing data was estimated with interpolation. Traffic speeds were computed 

from flow and occupancy information using a method suggested by Jia et al. (2001) 

to estimate travel times and serve as model inputs. It is reported that the proposed 
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time-varying coefficient model outperformed the historical average method and a k-

Nearest Neighbors (k=2) model. 

Chen et al. (2003) developed a travel time prediction system similar to that of 

Rice and van Zwet (2004) on two 20-mile two-way freeway segments, one having 

135 detectors and the other one with 120 detectors. A trajectory-based travel time 

estimation method was used to estimate historical travel times for model training. By 

comparing with the data from probe vehicles, they found some large errors in 

evaluation because of missing data, a severe incident and other unknown reasons. 

Shien and Kuchipudi (2003) developed two Kalman filter models based on 

data collected from electronic toll devices on a 17-mile segment. The time periods 

with low detection rate were filled with historical average data. The performance of 

the link-based model and the path-based model was reported to vary under different 

scenarios. 

Note that all of the aforementioned simulated systems were developed based 

on prefiltered datasets without missing or faulty data. 

2.4.2 Real-world Systems 

Over the past decades, several real-time travel time display systems have been 

implemented worldwide. Some systems display travel times to roadside or overhead 

variable message signs (VMS), and others have web-based output interfaces. 

TranStar in Houston, TX, USA, collects travel times from nearly two million 

EZ-Tags and posts the average travel times from these completed trips onto dynamic 

message signs (DMS) in real time (http://traffic.houstontranstar.org). 
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The travel time system in Chicago, IL, USA (Illinois State Toll Highway 

Authority, 2005), is based on two sources of travel time estimations: travel times 

computed from electronic toll readers and those estimated from traffic detectors. 

When more than one source is available, one type of data will be chosen based on 

operational experience and judgment. 

Several states have used the Georgia Navigator software to display the travel 

times computed by the current average speeds collected from each link, including 

Atlanta and Macon, GA, USA (http://www.georgia-navigator.com/trips), Portland, 

OR, USA (Oregon Department of Transportation, 2005), and Nashville, TN, USA 

(Tennessee Department of Transportation, 2005). Such systems generally will be shut 

down if no data is reported from one detector station for a period of time. 

Washington State Department of Transportation, USA, determines travel 

times with the current speeds computed by detected flow and occupancy information 

from detectors at an average spacing of 0.5 miles 

(http://www.wsdot.wa.gov/Traffic/seattle/questions/traveltimesdetail.htm). 

Similar systems have also been implemented in the United Kingdom, the 

Netherlands, and Japan. However, most of these systems provide travel times with 

simple estimation or prediction algorithms. No report of incorporating advanced 

algorithms for filtering and estimating missing data has been found in these actual 

systems. 

2.5 Conclusions 

This chapter reviewed the existing approaches for travel time estimation and 

prediction, including some simulated and real-world travel time prediction systems. 
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 Among the three types of travel time estimation models, the flow-based 

models, which need high accuracy of detector data and uniform geometric features, 

are the least applicable for use in a real-world system. Vehicle identification models 

need new detection hardware or take raw detector signals as input and therefore may 

incur high system costs and the need for a large data transmission bandwidth. 

In contrast, the trajectory-based model for travel time estimation is relatively 

promising, since it has the potential to fit with long segments and more complex 

geometric features. 

Overall, nonparametric models are able to provide more reliable travel time 

predictions than parametric models in a single-model system structure. Hybrid 

models are reported to be able to further improve prediction reliability. 

In conclusion, to advance the existing models for real-world applications, one 

must overcome the following critical issues: 

• A travel time estimation model shall be able to deal with all types of 

geometric features and traffic patterns when the direct measurement of 

travel times is not available; 

• A travel time prediction model shall function reliably under both 

commonly seen traffic conditions and less frequently observed traffic 

patterns; 

• A real-time missing data estimation model is needed to improve the 

system’s reliability; and 
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• The system needs to have a monitoring function that can identify 

situations where reliable predictions cannot be provided due to model 

limitations and/or missing data. 
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Chapter 3: The Architecture of a Reliable Travel Time 
Prediction System with Sparsely Distributed Detectors 

 

3.1 Introduction 

As is well recognized, densely distributed traffic detectors can help travel time 

prediction systems achieve high reliability. The literature review has shown that there 

lacks the study on developing models for a freeway segment with sparsely distributed 

detectors, as most existing works are based on the detection spacing of 0.5 miles. The 

costs of detector purchase, installation, communication and maintenance constitute 

the majority of the system costs. Therefore, the lower the number of detectors needed 

to cover the targeted freeway segment for travel time prediction, the more likely for 

the responsible agency to deploy such a system. 

Since travel time information is sensitive to the public, a system using fewer 

traffic detectors still needs to (1) build a reliable historical travel time database even 

without direct measurements of travel times; (2) take commonly available data from 

various types of traffic detectors for better system compatibility; (3) estimate missing 

or delayed data to extend the system’s reliability; and (4) identify the conditions in 

which a reliable prediction may not be attainable during real-time operations. 

The flowchart for system operations, along with the introduction of each 

principal component and their interrelations, will be described in the rest of this 

chapter. 
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3.2 System Flowchart 

The proposed system architecture aims to provide reliable travel time 

prediction using sparsely distributed detectors. The system comprises four principal 

components: a travel time estimation module, a travel time prediction module, a 

missing data estimation module, and an incident detection module. The proposed 

system has two operational stages: the model-training stage and the real-time 

operation stage. The operational flowcharts for these two stages are briefly presented 

below. 

3.2.1 Model-training Stage 

Figure 3.1 shows the system’s operational flowchart for the model-training 

stage. Before the proposed travel time prediction system can start to operate, one 

must take the following five steps to calibrate all system parameters and construct the 

historical travel time database. 

Step 1: Calibrate all detectors to a reliable state 

This step is essential to all intelligent transportation systems that take data 

from traffic detectors. Without proper calibration, an unreliable detector can 

significantly degrade the system’s reliability. 

Step 2: Long-term collection of traffic data 

In the model-training stage, the system needs to collect long-term traffic data 

for training models and constructing the historical travel time database for its on-line 

operation. For better system performance at the real-time operation stage, the travel 

time prediction module also uses the information from the weekly traffic patterns. 

Therefore, it needs to have a fairly long data collection period to make sure that a 
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sufficient number of samples are available for each weekday. For example, a 

continuous three-month data collection period will yield about 12 to 14 samples for 

each weekday. 

 

Figure 3.1 System flowchart for the model-training stage 

Step 3: Collection of traffic patterns and actual travel times 

The proposed system needs information about recurrent traffic patterns to 

determine the critical lanes before training its model components. The travel time 

estimation module also requires actual travel time information to train its clustered 

linear regression model and calibrate its enhanced trajectory-based model. Actual 
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travel times can also help evaluate the actual performance of the travel time 

prediction module, which is based on estimated travel times. 

Step 4: Parameter calibration for the travel time estimation module 

The main model of the travel time estimation module, a clustered linear 

regression model, requires sufficient actual travel times in each cluster to determine 

its best fit coefficients. The supplemental model, an enhanced trajectory-based model 

for travel time estimation, does not require actual travel times for calibration, but 

requires actual speed information to construct the occupancy-speed relations. 

Step 5: Construction of the historical travel time database 

Once the travel time estimation module has been properly trained and 

calibrated, one can apply it to the long-term collected set of traffic data to construct 

the historical travel time database, which is used to support the travel time prediction 

module. 

Step 6: Parameter calibration for the travel time prediction module 

In the hybrid model structure of the travel time prediction module, the k-

Nearest Neighbor model requires the analysis of the historical traffic patterns in 

critical lanes to determine its parameters. The training process for the supplemental 

model, an enhanced time-varying coefficient model, is based on the data in both the 

traffic database and the historical travel time database. 

After the entire training process is completed, the proposed travel time 

prediction system is ready for real-time operations. 
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Figure 3.2 System operational flowchart for the real-time operation stage 
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3.2.2 Real-time Operation Stage 

Figure 3.2 shows the operational flowchart of the proposed travel time 

prediction system at the real-time operation stage. 

The entire real-time operation consists of the following steps. 

Step 1: Data acquisition 

At time t, the system will receive the real-time data from all detectors and then 

store them in the traffic database. 

Step 2: Incident detection 

The proposed travel time prediction system will first apply its incident 

detection module to the traffic data. If one or more incidents are detected, the system 

will inform the control center and stop the predictions for those segments plagued by 

detected incidents. 

Step 3: Missing data estimation 

The missing data estimation module will perform a test on those links 

experiencing no incident and evaluate if any required input data is missing, and then 

execute the missing data estimation if needed. If the module detects that data missing 

on one or more links cannot be reliably estimated at the current time, it will then 

notify the system to stop the prediction of travel times on those segments. 

Step 4: Travel time prediction 

The travel time prediction module, which has a hybrid model structure, will 

provide travel time predictions for segments that do not experience incidents or 

unreliable missing data from traffic detectors. 
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Step 5: Update of the database of historical travel times 

The travel time estimation module will take the most recent available detector 

data to estimate the travel times of completed trips. The information of the most 

recently completed trips will be available immediately for use by the travel time 

prediction module in the next time interval. 

The proposed travel time prediction system will then repeat the same process 

from Step 1 for the next time interval. 

3.3 Principal Functions of System Modules 

As discussed above, the proposed travel time prediction system consists of 

four principal modules: a travel time estimation module, a travel time prediction 

module, a missing data estimation module, and an incident detection module. The 

following section will briefly describe the key function of each module. 

3.3.1 Travel Time Estimation Module 

The travel time estimation module will estimate travel times from detector 

data and update the historical travel time database when there is no direct 

measurement of the travel time available in the system. To ensure the system’s high 

compatibility, this module shall be capable of receiving data from any commonly 

used traffic detector. In order to achieve high reliability with fewer detectors, the 

proposed system will best use the information of geometric features and common 

traffic patterns to perform travel time estimation. 

To contend with inevitable data deficiencies, the proposed travel time 

estimation module employs a hybrid model structure. The main model, a clustered 
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linear regression model, is used to provide estimated travel times for traffic scenarios 

that have been frequently observed. In contrast, an enhanced trajectory-based model 

will serve as the supplemental model, designed to deal with scenarios that lack 

sufficient field data for model calibration. In real-time operations, the travel time 

estimation module will concurrently estimate travel times from all completed trips 

and store them in the database for use by the travel time prediction module. 

3.3.2 Travel Time Prediction Module 

Similar to the travel time estimation module, the main input variables of the 

travel time prediction module shall be readily available from most existing traffic 

detectors. The proposed module employs a hybrid model structure that integrates one 

k-Nearest Neighbor model with an enhanced time-varying coefficient model to 

improve prediction accuracy. 

With the improved k-Nearest Neighbors model for travel time prediction, the 

system can take full advantage of historical travel times and on-line detected traffic 

conditions. With an improved searching function, the k-Nearest Neighbors model can 

best match the detected traffic conditions with those in the historical data set, based 

on characteristics of traffic patterns and geometric features of the target segment. An 

enhanced time-varying coefficient model will serve as the supplemental model in the 

hybrid model structure for travel time prediction. It functions to capture the relations 

between the daily and weekly time-dependent travel time patterns. 
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3.3.3 Missing Data Estimation Module 

Missing data is a critical issue that often plagues any on-line system. Most 

models developed in the literature are based on an assumption of no missing data. 

Missing just one item in the critical data stream may prevent the system from 

functioning properly. The proposed travel time prediction system contains a missing 

data estimation module to deal with the missing and/or delayed data that frequently 

occurs due to detector malfunctions and/or communication problems. 

The missing data estimation approaches in this module are developed 

specifically to fit the hybrid model structure used in the travel time prediction module 

and can evaluate the reliability of the estimated missing data. If the estimated missing 

data may significantly degrade the prediction quality, the proposed travel time 

prediction system will suspend the prediction on the affected segments until reliable 

data becomes available. 

3.3.4 Incident Detection Module 

Note that most travel times during nonrecurrent congestion (such as an 

incident) vary with a number of response- and operations-related factors, and most 

prediction systems are designed for recurrent daily congestion only. However, to 

determine when to switch to the incident report mode, the proposed travel time 

prediction system needs to have an incident detection module that can employ 

different algorithms in parallel to ensure its detection accuracy on long links. In real-

time operation, this module will evaluate results from all algorithms and then make a 
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final decision. The system will not offer predicted travel times for segments that 

contain links plagued by detected incidents. 

3.4 Summary 

This chapter presented the operational flowcharts of the travel time prediction 

system with sparsely distributed detectors at both the model-training and the real-time 

operation stages. To contend with many technical and compatibility issues, the 

proposed system is designed to consist of four main modules: a travel time estimation 

module, a travel time prediction module, a missing data estimation module, and an 

incident detection module. The travel time estimation module estimates travel times 

from detector data to construct the historical travel time database and then 

continuously update that database in real-time during operations. The travel time 

prediction module takes real-time traffic data from the detectors and from the 

historical database to predict travel times for different destinations. The missing data 

estimation module is designed to estimate missing and/or delayed data in real time so 

as to avoid system interruption. The incident detection module is used to detect 

incidents during real-time operations and prevent the system from providing 

unreliable predictions under nonrecurrent congestions such as incidents. 
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Chapter 4:  A Hybrid Model for Reliable Travel Time 

Estimation on a Freeway with Sparsely Distributed Detectors 

 

4.1 Introduction 

As is well recognized, travel times are essential information for traffic 

controls, operations, transportation planning, and advanced traveler information 

systems (ATIS). Several measurement methods have been used in practice to estimate 

travel times, including probe vehicles, vehicle identification with in-vehicle devices 

(i.e., electronic toll tags), and vehicle identification without in-vehicle devices (i.e., 

video-based vehicle identification and license plate recognition). However, due to the 

limited sample sizes the probe vehicle method can provide and the high costs 

associated with both types of vehicle identification methods, it is not cost-effective 

for any responsible agency to sustain ATIS operations with those methods. 

With recent advances in vehicle detection technologies, more and more 

studies emerge to provide better estimates of travel times using new traffic detectors, 

which can provide reliable measurements of cumulative traffic flows and occupancy 

for any prespecified time interval. As reported in the literature, most existing models 

for travel time estimation are developed and tested for short links (i.e., detectors 

placed less than 0.5 miles apart). These models may not work properly on long links 

due to the fact that their embedded assumptions may not be valid when detector 

spacing is longer than 0.5 miles, as in most existing highway systems. In this chapter, 
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all critical issues associated with travel time estimation on long links will be 

discussed in Section 4.2, followed by the introduction of input variables and other 

available information for the proposed hybrid travel time estimation module in 

Section 4.3. Sections 4.4 and 4.5 will present two proposed model structures: a 

clustered regression model and an enhanced trajectory-based model.  

4.2 Challenges in Estimating Travel Times on Long Links 

In review of the literature, it is clear that providing a reliable estimate of travel 

times remains a challenging task, especially for highway segments with long detector 

spacing (e.g., > 0.5 miles). Some critical issues associated with travel time estimation 

are discussed below. 

 

Spatial distribution of the congestion patterns 

Despite the tremendous efforts made by traffic flow researchers over the past 

decades in modeling the evolution of congestion patterns, it remains quite difficult for 

any existing method to reliably estimate or predict the propagation of traffic patterns 

under both recurrent and nonrecurrent congestion patterns. A failure to capture the 

temporal and spatial distributions of traffic patterns will actively degrade the quality 

of any model for travel time estimation or prediction. 

 

Impacts of geometric features 

Changes in geometric features often result in different roadway capacity and 

traffic patterns. Example congestion patterns incurred due to changes in freeway 

geometric features are summarized below: 
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- Lane drop 

Figure 4.1 shows an example of traffic conditions commonly seen near a lane 

drop point. During congested periods, traffic conditions in four sub segments, A to D, 

could evolve from a uniform condition to a chaotic state by frequent lane changes and 

accelerations/decelerations and then move back to a steady state after the merges. 

- Lane addition 

By the same token, traffic conditions as shown in Figure 4.2 may go through a 

similar evolution process from A to C. 

- On-ramp/off-ramp 

Figure 4.3(a) and (b) show possible traffic conditions near an off-ramp and an 

on-ramp, respectively. Due to their local knowledge of possible delays and 

congestions caused by weaving traffic near a ramp, drivers may avoid using the 

through lane next to the ramp. Figure 4.4 illustrates an example of congestion caused 

by this phenomenon in two through lanes on I-70 near Exit 87A to US29 southbound 

(Figure 4.5). One needs to carefully analyze the discrepancy of traffic flow speeds 

between lanes to estimate the average speed within one segment. 

 

Figure 4.1 Congestion pattern near a lane drop point 

(A) (B) (C) (D) 
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Figure 4.2 Congestion pattern near a lane addition point 

 
(a) 

 
(b) 

Figure 4.3 (a) Congestion pattern near an off-ramp;  
(b) Congestion pattern near an on-ramp 

(A) (B) (C) 

(A) (B) (C) 

(A) (B) (C) 
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Figure 4.4 Average vehicle counts in 5-minute intervals on 
four Thursdays in July, 2006 at Exit 87A on I-70 

 

Figure 4.5 Geometry of I-70 at Exit 87A 

Other Factors 

Aside from the aforementioned factors, the traffic flow patterns and the 

resulting travel times may also vary with the low visibility caused by weather or sun 

glare or with poor road surface conditions caused by rain, snow or debris. 

Quantifying the impacts of those factors, however, has not yet been reported in the 

literature and is beyond the scope of this study, too. 

Lane 3 

Lane 2 

Lane 1 
Detector 

I-70 

I-70 

To US29 South 
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4.3 A Hybrid Travel Time Estimation Model 

This study develops a hybrid model for reliable travel time estimation for long 

freeway links with widely spaced detectors. This section will present a flowchart of 

the model and will describe the required input variables.  

 

Flowchart of the Hybrid Model 

Figure 4.6 shows the flowchart of the proposed hybrid model, which consists 

of two main components: a clustered linear regression model and an enhanced 

trajectory-based model. When applying the hybrid model, the system will first cluster 

traffic scenarios into predefined categories based on the traffic data. The system will 

employ the linear regression model if the detected traffic scenario belongs to a 

category in which a linear regression model has been trained with a sufficiently large 

sample of historical travel times. Otherwise, it will employ the enhanced trajectory-

based model, which does not require pretraining with a large amount of historical 

data, to produce the travel time estimation. 

 

Model input and available information 

As mentioned in Section 3.2.1, both components in the proposed hybrid model 

employ the cumulative traffic volume and average occupancy in each lane over fixed-

length time intervals as the main input variables. Other variables that are collectable 

with reliable quality are also included in the model development, including roadway 

geometric features, common daily and weekly traffic patterns, and free-flow travel 
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times. The definitions of variables used to develop the model can be found in 

Appendix A. 

 

Figure 4.6 Flowchart of the hybrid travel time estimation model 
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4.4 Clustered Linear Regression Models 

When a vehicle is traveling in a link, the range of possible travel times is 

usually constrained by the traffic pattern. For example, a vehicle can never reach free-

flow travel time when there is heavy congestion in the link. Hence, this study first 

develops a set of clustered linear regression models to categorize traffic conditions 

into predefined traffic scenarios and then estimates a travel time for each scenario. 

4.4.1 Model Formulations 

By dividing a link into two equal-length sublinks, one can express a vehicle’s 

travel time as follows: 

)()()( 21 ttt ddd τττ +=        (4.1) 

where )(tj
dτ  is the travel time for the vehicle to traverse the first or second half of the 

link (d, d+1) with departure time t. 

Denoting )(tu j
d  as the average travel speed in the jth half, one can rewrite Eq. 

4.1 as: 

)(2)(2
)( 21 tu

L
tu

L
t

d

d

d

d
d +=τ       (4.2) 

Coifman (2002) estimated a vehicle’s in-segment speeds from the upstream 

detector data after the departure time, or from the downstream detector data before 

the vehicle’s arrival time, to obtain a travel time estimation. To improve the model’s 

robustness for long segments (e.g., > 0.5 miles), this study assumes a linear relation 

between a vehicle’s average in-segment speed and the average speed of the upstream 

or downstream through traffic during the same time interval, as follows: 



 

 50 
 

)))(),((ˆ(2)))(,(ˆ(2
)(

22
21

12112
1

11 atttua
L

attua
L

t
dd

Thru
d

d

d
Thru
d

d
d ++

+
+

=
+ τττ

τ  

          (4.3) 

where aij  are coefficients. 

On the right side of Eq. 4.3, the first term is the travel time for a vehicle to 

traverse the first half of the link (d, d+1); the second term is for the second half of the 

link. Similar to the model developed by Liu et al. (2006), Eq. 4.3 has unknown 

variables on both sides. Liu et al. (2006) provided an iteration-based solution 

algorithm to solve their problem, which seemed to work well in a simulated traffic 

environment. However, the performance of their solution algorithm is conditioned on 

the quality of detector data, which is often undesirably poor in real world systems. 

Hence, this study uses a preliminary estimate of the travel time to replace the actual 

travel time information in the independent variables to achieve better robustness. 

More specifically, assuming that traffic conditions in a link (d, d+1) can be divided 

into P scenarios with a relatively small range of travel times in each scenario, one can 

then replace the actual travel time information in independent variables in Eq. 4.3 

with a preliminary estimate of travel time for this scenario to obtain Eq. 4.4: 

)))()1(),((ˆ(2
           

)))(,(ˆ(2
)(

1
221

1
21

1
12

1
11

apptua
L

aptua
L

t

E
d

d
p

E
d

d
p

Thru
d

d

E
d

d
p

Thru
d

d
d

+−+

+
+

=

+ τγτγ

τγ
τ

  (4.4) 

where p is the index of predefined traffic scenarios in link (d, d+1); 

τ d
E (p)  is the preliminarily estimated travel time in link (d, d+1) under the pth 

predefined traffic scenario; 
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γ p
d  is the estimated proportion of time taken for the vehicle to traverse the first 

half of the link (d, d+1) under the pth scenario; and 

aij
1  are coefficients. 

(4.4) can be reorganized as: 
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   (4.5) 

where k
ija  are coefficients. 

Note that one can obtain the preliminary estimate of the travel time in various 

ways. For example, using the average of collected travel times from a sufficient 

number of samples may be one of the simplest methods. However, for rarely 

observed traffic scenarios, it is difficult to produce a reliable estimation of the travel 

time at this preliminary stage. Therefore, the travel time estimation module requires at 

least one supplemental model to deal with scenarios lacking a reliable preliminary 

estimate. 

Because detector data is usually collected on a lane-by-lane basis, the average 

speed of through traffic is not directly available from the detector information. Most 

existing studies either take data from one lane (e.g., the far left lane) as the average 

condition of the through traffic, or simply compute the average over all through lanes. 

However, as analyzed in the previous section, traffic conditions in some lanes may 

not affect the through-flow speed. Therefore, one needs to carefully select critical 

lanes to obtain the average speed of through traffic flow. This study assumes that the 

average speed of through traffic flow has a linear relation with those in all critical 
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lanes, which may include both the through lanes (first item on the right side of Eq. 

4.6) and the ramp lanes (second item on the right side of Eq. 4.6):  
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where k
ija  are coefficients. 

Note that reliable speed data may not be directly available from one detector 

and thus needs to be estimated from the available data. A commonly used method to 

estimate speed is to rely on the relation between traffic flow, occupancy and the 

average vehicle length. 

ud ,la (t,Δt) = g vd ,la (t,Δt)
od ,la (t,Δt)

      (4.7) 

where g is the average vehicle length. 

 As reported in the literature, Eq. 4.7 may not be valid when the time interval is 

short, because average vehicle lengths may vary significantly during short intervals. 

However, the impact of this error decreases with an increase in the length of the 

selected time interval and/or the traffic volumes. Assuming that, under scenario p, a 

factor gp  can satisfy Eq. 4.7, one can then obtain Eq. 4.8 from Eq. 4.5, Eq. 4.6 and 

Eq. 4.7 as follows:  
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where pT
ladb ,

,  is the coefficient of the la
th lane in )(1, pd

dd +CLT  at detector d under the 

pth traffic scenario for link (d, d+1); 

 pT
ladb ,

,1+  is the coefficient of the la
th lane in )(1, pd

dd +CLT  at detector d+1 under 

the pth traffic scenario for link (d, d+1); 

pR
ladb ,

,  is the coefficient of the la
th lane in )(1

1, pd
dd
+
+CLR  at detector d under the 

pth traffic scenario for link (d, d+1); 

 pR
ladb ,

,1+  is the coefficient of the la
th lane in 1

1,
+
+

d
ddCLR  at detector d+1 under the 

pth traffic scenario for link (d, d+1); and 

 p
db ,0  is the intercept for the pth scenario for link (d, d+1). 

In order to estimate travel times with Eq. 4.8, one needs to estimate d
pγ , which 

is the portion of time it takes one vehicle to traverse the first half of link (d, d+1). 

4.4.2 Defining Traffic Scenarios 

Defining the clustering function for a clustered linear regression model for 

travel time estimation is a challenging task which shall have the following features: 

- Travel times in each clustered traffic scenario should always have a 

relatively small variation; 

- The variables used for clustering should be obtainable from detectors; 

- The input variables from both the upstream and downstream detectors 

should be obtained only from critical lanes so as to reflect actual through 

traffic conditions. 

The following guidelines can help define the traffic scenarios under recurrent 

congestions: 
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1. Predefine the preliminary types of patterns, based on the congestion level 

detected by the upstream and the downstream detectors as shown in Table 

4.1. 

Table 4.1 Four types of basic traffic scenarios in each link 

Traffic Condition at 
Upstream Detector 

Traffic Condition at 
Downstream Detector Congestion Level in the Link 

No congestion No congestion Free-flow condition 

Congested No congestion Moderate congestion or 
transition period 

No congestion Congested Moderate congestion or 
transition period 

Congested Congested Heavy congestion 
 

2. If the congestion at one end of the link is not always uniformly distributed 

across lanes, one shall further divide the set of scenarios based on the 

nature of the congestion — for example, queue spillback caused by an off-

ramp. 

3. For uniformly distributed traffic conditions, the average of detected data 

across the same type of lanes shall be used as the input variable for the 

proposed model. 

4. For scenarios with nonuniformly distributed traffic conditions, one shall 

take data from the lanes that are highly correlated with the observed traffic 

conditions as the input variables. 



 

 55 
 

4.5 An Enhanced Trajectory-based Model 

As it is often difficult to have sufficiently large samples for all possible traffic 

scenarios from field observations, this research has also developed an enhanced 

trajectory-based model to serve as a supplemental component for those scenarios with 

inadequate samples of historical data. 

4.5.1 Speed Estimation 

Using the trajectory-based model for travel time estimation, one needs to 

estimate the speed from known traffic data. Because speed data used in most 

trajectory-based models are for short intervals, Eq. 4.7 cannot provide reliable 

estimates. Instead, this study proposes the following equations for speed estimation: 
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where  ),( txu is the speed to be computed at location x at time t; 

 ),( txo  is the occupancy in the small section near location x at time t; 

 freeo  is the upper bound of occupancy under free-flow traffic conditions; 

congo  is the boundary of occupancy between moderately and heavily congested 

conditions; 

 maxo  is the maximum occupancy under recurrent congestion; 
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 freeu  is the free-flow speed; 

congu  is the boundary of the speed between moderately and heavily congested 

traffic conditions; 

 minu  is the minimum speed under heavily congested conditions; and 

 m and n are parameters to be calibrated with field data. 

 One can calibrate the boundaries of occupancy and speed data with collected 

travel times and detector data. The method reported by Zou and Wang (2006) is 

applicable for estimating m and n in Eq. 4.10 with collected field travel time 

information. 

4.5.2 Model Formulations 

To provide reliable estimation of travel times for a long link, a trajectory-

based travel time estimation model needs to reliably compute the in-segment speed 

for each target vehicle even if its position is far from either end of the target link. 

Unlike the models in the literature for short links (Coifman, 2002; van Lint 

and van der Zijpp, 2003), this study develops two types of in-segment speed 

estimation methods, depending on the vehicle’s current position in a link. When the 

vehicle is within a short distance of the upstream detector or the downstream detector, 

this study considers a possible range of traffic propagation speeds to estimate the in-

segment traffic situations from nearby traffic detectors. Otherwise, this study uses a 

model combining both traffic propagation relations with the piecewise linear speed-

based (PLSB) model to achieve better robustness. 
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As shown in Figure 4.7, the model will first estimate occupancy using the 

enhanced trajectory-based model at the vehicle’s position with Eq. 4.11 and will then 

apply Eq. 4.10 to compute the vehicle’s speed at location x at time t. The vehicle is 

assumed to travel at this speed over a short interval, stept , and then its new location at 

time (t+ stept ) will be updated. The procedure repeats the same steps until the vehicle 

arrives at the downstream detector. 
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Figure 4.7 Flowchart of the enhanced trajectory-based travel time estimation model 
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4.6 Performance Evaluation of the Travel Time Estimation Module 

The aforementioned travel time estimation module has been successfully 

calibrated and validated with actual travel time data collected from the field site on a 

25-mile stretch of I-70 Eastbound from MD27 to I-695 with 10 detectors. Details of 

the geometric features of the freeway segment are available in Chapter 7. This section 

will present the evaluation results of the developed travel time estimation module, 

which serves as the tool for constructing and concurrently updating the database for 

historical travel times for the prediction module. 

4.6.1 Dataset for Model Development 

The research team at the University of Maryland conducted field surveys for 

each link between two neighboring detectors for calibrating the travel time estimation 

module. As shown in Table 4.2, the research team designed the survey plan based on 

the observed daily traffic patterns in the target freeway segment. For example, 

Segments 3-4, 4-5, 5-6 and 6-7 are often very congested in the morning, but usually 

not congested in the evening, therefore no evening surveys were conducted for these 

segments. In contrast, severe congestion is frequently observed in Segments 7-8, 8-9 

and 9-10 during both morning and evening peak hours. The research team therefore 

collected the data for both AM and PM periods for those segments. 

Please note that multiple surveys were conducted for certain links due to the 

encountering of nonrecurrent congestion patters such as accidents. Hence, the 

research team will generally first filter out the data points under incident/accident 

impacts, and then calibrate the travel time estimation module with samples in each 

link that exhibited different recurrent congestion patterns. 
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Table 4.2 Field surveys conducted by the research team for calibrating the travel 
time estimation module 

Link Date and Time 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 
12/1/2005 AM Y Y Y Y Y Y Y Y Y 
1/19/2006 AM     Y     
1/20/2006 AM      Y    
1/20/2006 PM         Y 
2/1/2006 AM   Y       
2/2/2006 AM   Y       
2/7/2006 PM        Y  
2/28/2006 AM   Y Y Y Y    
3/1/2006 PM       Y Y Y 
3/7/2006 AM       Y Y Y 
3/9/2006 PM       Y Y Y 

Note: “Y” indicates that a survey has been conducted on the date and time listed on 
the first column. 
 

4.6.2 Dataset for Performance Evaluation 

After calibrating the travel time estimation module, the research team 

conducted additional field surveys for evaluating its performance. The evaluation 

covered the subsegments between Detector 3 (at the split of I-70 and US40) and 

Detector 10 (at the start of ramp to I-695) on the target freeway segment. The 

subsegment from Detector 3 to Detector 10 often incurs heavy congestion in the 

morning peak hours on Tuesdays and Thursdays. Therefore, the research team 

conducted two travel time surveys in the morning peak hours on April 6th, 2006 and 

April 20th, 2006 for this subsegment from Detector 3 to Detector 10. The actual travel 

times were obtained by matching vehicles from two videos taken at the beginning and 

end of the sub-segment. There were a total of 71 data points collected on April 6th, 

2006 and 114 data points collected on April 20th, 2006. The surveys covered both 

transition periods between congestion and free-flow state, as well as heavily 



 

 61 
 

congested periods. Figure 4.8 shows the distribution of collected data samples in the 

subsegment from Detectors 3 to Detector 10 during the survey periods. 
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Figure 4.8 The distribution of collected travel times in April 6th, 2006 and April 20th, 
2006 

Note that the subsegment from Detector 1 to Detector 3 always exhibits no 

congestion and therefore one can use the free-flow speed to approximate its travel 

time. 

4.6.3 Performance Evaluation 

Subsegment from Detector 3 to 7 is about 4-mile in distance that consists of 

two interchanges and two ramps (Figures 7.1 and 7.2). Complex geometric features 

and high variation in traffic volumes have made this subsegment difficult for 

developing travel time estimation model. The research team categorized the 

congestion into different levels based on travel time ranges so as to have a detailed 
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evaluation of the performance under various traffic conditions. As shown in Figure 

4.8 and Table 4.3, congestion was much heavier on April 6th, 2006 having the 

maximum collected travel time of 1290 seconds (21.5 minutes) on the subsegment 

from Detector 3 to 10, which had a free-flow travel time of 520 seconds (8.7 

minutes). Data collected on April 20th, 2006 were mostly between 800 seconds and 

1,000 seconds, which exhibited quite fluctuated pattern between 7:15AM and 

8:00AM. 

Tables 4.3(a) and (b) summarize the performance of the estimation module on 

the subsegment from Detector 3 to Detector 10 against the actual data collected on 

two different days. Figures 4.9(a) and (b) show the distribution of estimated and 

actual travel times vs. departure time for two days, where the estimated travel times 

showed a similar trend to the actual travel times. The results from the travel time 

estimation module showed satisfactory results in all travel time categories during 

those two days with an average of less than 8.8% relative absolute error. Even in the 

transition periods, the module was still able to estimate travel times with an error of 

less than 70 seconds. In heavily congested cases, in which travel times are mostly 

greater than twice of the free-flow travel time (520 seconds), the developed module 

can still provide estimates with average absolute error of less than 90 seconds. 

Table 4.3(c) shows the overall evaluation results for the transition periods 

(travel times between 520 seconds and 800 seconds), moderate congestion (travel 

times between 800 and 1000 seconds) and heavy congestion (travel times greater than 

1,000 seconds). For all the 184 collected actual cases, the travel time estimation 

module successfully yielded the estimated travel times with the acceptable accuracy. 
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Table 4.3 Performance evaluation of the travel time estimation module 

(a) Performance evaluation of travel time estimation module on the subsegment from 
Detector 3 to Detector 10 on April 6th, 2006 

Travel Time Range (sec)  520 to 800 800 to 1000 >1,000 
Sample Size 10 12 49 

Maximum Travel Time (sec) 791 998 1,290 
Average Travel Time (sec) 710 928 1,109 

Average Absolute Error (sec) 51.9 60.3 83.6 
Average Relative Error (%) 7.3% 6.6% 7.4% 

 
(b) Performance evaluation of travel time estimation module on the subsegment from 

Detector 3 to Detector 10 on April 20th, 2006 
Travel Time Range (sec)  520 to 800 800 to 900 900 to 1000 

Sample Size 13 84 17 
Maximum Travel Time (sec) 796 898 985 
Average Travel Time (sec) 767 847 929 

Average Absolute Error (sec) 65.2 49.4 73.0 
Average Relative Error (%) 8.7% 5.8% 7.8% 

 
(c) Overall Performance evaluation of travel time estimation module on the 
subsegment from Detector 3 to Detector 10 on April 6th and April 20th, 2006 

Travel Time Range (sec)  520 to 800 800 to 1000 > 1000 
Sample Size 23 112 49 

Maximum Travel Time (sec) 796 998 1290 
Average Travel Time (sec) 742.3 847.2 1109.1 

Average Absolute Error (sec) 58.5 54.5 83.6 
Average Relative Error (%) 8.1% 6.3% 7.4% 
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(a) Comparison between actual and estimated travel times in the subsegment from 
Detector 3 to Detector 10 on April 6th, 2006 
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(b) Comparison between the actual and estimated travel times in the subsegment from 
Detector 3 to Detector 10 on April 20th, 2006 

Figure 4.9 Comparisons between actual and estimated travel times in the subsegment 
from Detector 3 to Detector 10 on April 6th, 2006 and April 20th, 2006 
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4.7 Conclusions 

This chapter presents a hybrid travel time estimation model that uses a 

clustered linear regression model as the main model, and an enhanced trajectory-

based model as its supplemental component. The clustered linear regression model 

functions to categorize traffic conditions in a link into several scenarios, based on the 

exhibited congestion patterns. One can then construct the input dataset with selected 

critical lanes. The primary reason for using an enhanced trajectory-based model as a 

supplemental component is to contend with the lack of sufficient samples for some 

relatively uncommon traffic scenarios. The proposed supplemental model can take 

advantage of the traditional trajectory-based methods grounded on traffic propagation 

relations and piecewise linear-speed-based models to provide reliable travel time 

estimations on long links. 

An extensive comparison between the collected and estimated travel times 

clearly indicate that the developed module is able to provide reliable estimates under 

transition periods, moderate congestion, and heavy congestion with an average 

relative absolute error less than 8.8%. During transition periods in the subsegment 

from Detector 3 to Detector 10, the developed module may yield a relatively large 

error, but it remains within the range of one minute. Overall, the module is capable of 

providing reliable travel times estimates from on-line detector data, and serving as a 

tool for constructing the historical travel time database. 
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Chapter 5: A Hybrid Model for Travel Time Prediction with 
Widely Spaced Detectors 

 

5.1 Introduction 

Due to deteriorating traffic conditions in most urban networks, providing 

reliable trip times to commuters has emerged as one of the most critical challenges for 

all existing advanced traveler information systems (ATIS). However, designing and 

implementing such a system to achieve the desired level of performance is quite a 

difficult task, as its resulting accuracy varies with many variables, including day-to-

day traffic demands, responses of individual drivers and their commuting patterns, 

conditions of the road facility, weather, incidents, and reliability of available traffic 

detectors etc. 

As discussed in Section 2.3, many studies have developed travel time 

prediction models for highway segments that have simple geometric features and 

densely distributed traffic detectors (e.g., every half-mile). The large number of 

detectors required for those models has limited their potential applications because of 

the diminishing resources for infrastructure development. This study intends to 

develop a travel time prediction model that can provide reliable travel time 

predictions in a sparsely distributed detector environment. The proposed model takes 

into account the geometric features of the target highway segment and the historical 

time-varying traffic patterns. 
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5.2 Model Structure 

To reliably capture the variability of day-to-day congestions, this study 

proposes a hybrid model structure that employs a k-Nearest Neighbor model as the 

main model and an enhanced time-varying coefficient model as the supplemental 

model for traffic scenarios that do not have sufficient historical data. The k-Nearest 

Neighbor model can take full advantage of similar historical travel times. It uses the 

“distances” between the current traffic condition and historical cases to assess the 

quality of the model output and to determine the need for selecting a different model 

structure. During the operation, this system can continuously update the historical 

travel time database and the parameters of the supplemental model to improve the 

model’s accuracy. Figure 5.1 shows the flowchart of the proposed model for travel 

time prediction. 

The travel time prediction system will first construct the input dataset of the k-

Nearest Neighbors model from the current real-time traffic data. If there exist at least 

k historical cases within the similarity threshold (TH) for the current condition, then 

the hybrid model’s output will be the main prediction result, which is the average of 

those k best historical matches. Otherwise, the prediction system will reorganize the 

input data for the supplemental time-varying coefficient model and then output the 

prediction result from the supplemental model. The real-time data will be 

concurrently processed to update the database of historical travel times. 

 Sections 5.3 and 5.4 will present the core logic of the proposed k-Nearest 

Neighbor model and the supplemental enhanced time-varying coefficient model 

respectively. 
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Figure 5.1 Flowchart of the hybrid travel time prediction model 
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5.3 k-Nearest Neighbor Model 

 To ensure the efficiency of the proposed k-Nearest Neighbor model, one needs 

to carefully analyze the following four key issues: the definition of the similarity, the 

selection of input variables, the searching window and time range, and the weighting 

factors. Each of these four key issues is discussed in sequence below: 

 

Definition of the similarity 

In a traditional k-Nearest Neighbor model, a distance is defined to reflect the 

similarity between two cases (Eq. 2.8). However, this definition for travel time 

prediction needs to be revised due to the fact that two cases with substantially 

different detected traffic data may still have similar travel times. Based on Eq. 2.8, 

this study has proposes the following procedures to compute the distance between the 

current and the historical cases. 

The proposed model first categorizes the traffic conditions with detected 

occupancy information. One can then use the following equation to define the traffic 

conditions into three types, free-flow condition, moderate congestion, and heavy 

congestion. 
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Where  ),( tttTC al
d Δ+  is the traffic type in lane la at detector d from time t to 

t+Δt; 
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 ),( ttto al
d Δ+  is the average occupancy in lane la at detector d from 

time t to t+Δt; and 

 al
dOF  and al

dOC  are the upper bound of free-flow occupancy and 

lower bound of heavy congestion occupancy for lane la at detector d 

respectively. 

The model then defines the modified distance mdis between the current case 

and one historical case as: 
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 and 1t  and 2t  are the time of day of the current case and historical 

cases, respectively. 

 

Selection of the input variables 

Most existing applications of the k-Nearest Neighbor model for travel time 

prediction simply take all available information to compute the distance between the 

current case and each candidate historical case. As discussed in Section 4.2.2, only 

information in critical lanes contributes to a reliable model output, especially when 
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detectors are far apart. This study proposes the following procedures to best identify 

the most critical variables for computing the similarity distance, mdis: 

1. Eliminate the data from those lanes that are well recognized by drivers in 

through traffic for their potential for disturbance incurred by on-ramp or 

off-ramp flows — for example, a through lane next to an off-ramp lane 

that most through traffic may avoid due to drivers’ knowledge of the 

possible congestion caused by the queue spillback from the off-ramp lane. 

2. Eliminate lanes that have no direct impact on the path travel time. duch as 

the right lane of a two-lane off-ramp. 

3. Compute the average value for all through lanes at one detector location 

with the same traffic conditions, and then use it as the model input. 

Note that those lanes with light historical traffic pattern are still needed in the 

input dataset for those scenarios having abnormal congestion patterns. 

 

Searching window and time range 

Both searching window and data intervals are important parameters for 

efficient operation of the k-Nearest Neighbor model. The searching window is the 

duration of time from the current time to the past in which a time series of the same 

variable is selected as the model input. 

As is well recognized in most prediction literature, to perform a reliable 

prediction with a longer horizon usually requires more historical and/or on-line data. 

To predict the travel time on a segment with multiple likes, one needs to predict 

traffic conditions in a shorter prediction horizon for the detector location which is 
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closer to the departure point than those detectors that are farther from the departure 

point. Therefore, the searching window of traffic information at each detector may 

increase with the distance from the origin point. To ensure the computing efficiency, 

one needs to set an upper limit for the size of the searching window so as to reduce 

the total number of input variables for the model, based on the local traffic pattern. 

Note that various traffic patterns may exist in a segment during a day, and 

thus result in different travel times. For example, it is possible for two cases with 

similar detected traffic conditions to have different travel times. Very often, one 

morning case and one evening case may have similar detected traffic flows, which 

however go to different destinations. Therefore, the searching procedure should only 

look for historical cases that are within a reasonable range from the current time of 

day for better prediction accuracy. Hence one can add this constraint to Eq. 5.3 to 

obtain the following equation. 
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 M is a very large number; 

 ),( tdTth  is the time-varying range for searching at detector d; and 

 t  and ht  are the time-of-day of the current case and the historical 

case respectively. 
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Note that one needs to determine ),( tdTth  based on the day-to-day traffic 

patterns for a given time of day at detector d. For example, ),( tdTth  may be different 

in morning peak hours, evening peak hours and off-peak hours. 

To improve the model’s reliability, besides the use of time of day information, 

this study further modifies Eq. 5.4 to search for cases that are in a weekday that 

usually has similar traffic patterns. Weekdays with similar traffic patterns are first 

grouped together into S sets. One can then modify Eq. 5.4 to obtain Eq. 5.5: 
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 M is a very large number; and 

 wkc and wkh are weekdays of the current case and the historical case, 

respectively. 

Similarly, one needs to determine how to group weekdays based on traffic 

patterns reflected from the historical data. 

 

Weighting factors 

The model uses weighting factors to reflect how traffic conditions in each 

critical lane contribute to the target prediction. This study implements the following 
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procedures to determine the weighting factors and the searching window for the k-

Nearest Neighbor model. 

Step 1: Divide one day into three traffic periods: morning peak hours, evening 

peak hours, and off-peak hours. 

Step 2: Determine the input variable set for each traffic period in each 

weekday group, based on the revealed traffic patterns. (i.e., through lanes with 

uniform traffic conditions at the same detector location can be combined as one 

variable). 

Step 3: Assign weighting factors for each variable during one traffic period in 

one weekday group, according to the frequency and severity of the congestion.  

Step 4: Determine the searching window for each variable and the time-

varying searching range for each weekly traffic scenario by analyzing the historical 

traffic patterns. 
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5.4 An Enhanced Time-varying Coefficient Model 

 This research has also developed an enhanced time-varying coefficient model, 

which serves as the supplemental model structure in the travel time prediction module 

for cases that do not have sufficient similar historical data. To ensure the model’s 

reliability for long segments with widely spaced detectors, this study modifies the 

definition of the status travel time in Eq. 2.10 with the weekly traffic patterns to the 

existing time-varying coefficient models (Zhang and Rice, 2003; Kwon and Petty, 

2005), which establish a linear relation between the status travel time and the actual 

travel time. 

 Figure 5.2 shows the flowchart of the enhanced time-varying coefficient 

model for travel time prediction. The model first constructs an input dataset by 

combining the currently available real-time data and the historical average of detector 

data in the same weekday after departure time t. The hybrid travel time estimation 

model developed in Chapter 4 will provide the estimated travel time, )(ˆ tT , which is 

the modified status travel time, based on the input dataset. One can then apply the 

weekly time-varying coefficients to compute the predicted travel time as follows: 
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Figure 5.2 Flowchart of the enhanced time-varying coefficient model 
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The modified status travel time serves as a preliminary estimate of travel time 

for a long segment more reliably than the original status travel time proposed mainly 

for short links. The use of weekly time-varying coefficients ensures that the model 

can capture weekly traffic patterns. The coefficients will be updated as soon as the 

new travel time information is available — after some trips have been finished. Note 

that the updated coefficient will not be used until the same weekday next week 

because the time interval Δt is usually smaller than the travel time T(t). 

5.5 Conclusions 

This study develops a hybrid travel time prediction module for reliable real-

time travel time prediction. Based on the historical travel times obtained from the 

travel time estimation module presented in Chapter 4, the proposed prediction module 

uses a k-Nearest Neighbor Model as the main model, and an enhanced time-varying 

coefficient model as the supplemental model for traffic conditions which do not have 

sufficient similar patterns in the historical database. The performance evaluation for 

the travel time prediction module and the overall system will be presented in Chapter 

7. 
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Chapter 6: Incident Detection Module 

 

6.1 Introduction 

The presence of an incident may cause significant delays on travel times, 

which cannot be reliably predicted with models developed for recurrent traffic 

conditions due to a variety of factors. However, as the reliability and the robustness 

are the top priority issues in a travel time prediction system, control center operators 

need an incident detection module to switch the system to a different mode 

automatically in response to a detected incident. Such a detection system is especially 

critical for a prediction system deployed with sparsely distributed detectors. This 

chapter details the incident detection module developed for the field demonstration of 

the real-time travel time prediction system, tested between June 4th, 2006 and August 

4th, 2006. The developed incident detection module, which focuses on the major 

incident/accident, has the following key features: 

• Has more than one algorithm to work in parallel for best detection 

performance; 

• Embed a false alarm detection function to capture the impacts of 

geometric features on the traffic condition; and 

• Interact with a well-document database for recurrent congestion patterns, 

including both daily and weekly patterns, to reduce the false alarm rate. 
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6.2 Model Structure 

To reliably detect the incident impacts, which usually are mixed with the day-

to-day congestions in links with various geometric features, this study develops a 

rule-based hybrid incident detection algorithm for use on freeways having long 

detector spacing. 

Figure 6.1 shows the flowchart of the developed incident detection module, 

where its single-station detection algorithm is used to detect incidents close to the 

detector station at either end of a link, and the dual-station detection algorithm is 

designed to identify incidents that are far from either detector. 

The operation logic of the developed incident detection module is to first 

forecast the current traffic condition at each detector location, based on the 

information collected prior to the current time interval for the two embedded 

algorithms. The single-station incident detection model and the dual-station incident 

detection model will then work in parallel to detect incidents for each link over the 

entire target freeway segment. When one incident is detected by any of the two 

algorithms, the incident detection module will inform the travel time prediction 

system to stop the prediction for the impacted segments, and then switch to a different 

mode such as replacing the predicted travel times with the incident warning 

messages. 
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Figure 6.1. System flowchart of the incident detection module 
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change in the traffic conditions that do not match any historical traffic patterns with 

the following two types of control variables, Type A and B, as defined in Eq. 6.1 and 

6.2: 
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where: )(, tAFlow
id  is the ith Type A control variable for traffic flow at time t at detector d 

)(, tAOcc
id  is the ith Type A control variable for occupancy at time t at detector d 

imax  is the maximum number of intervals to compare. 

i  is the index of the control variable, which is numbered from the 

current time interval to the past. Therefore, i=1 is for the current time 

interval, and i=2 is for the first time interval prior to the current time 

interval, etc. 1≤ i ≤ imax . 

)(tY Flow
d  is the predicted flow data at time t at detector d, based on the actual 

detector flow data obtained in intervals prior to time t 

)(tY Occ
d  is the predicted occupancy data at time t at detector d, based on the 

actual detector occupancy data obtained in intervals prior to time t 
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where: )(, tBFlow

id  is the ith Type B control variable for traffic flow at time t at detector d 
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 )(, tBOcc
id  is the ith Type B control variable for occupancy at time t at detector d 

)(tv thru
d  is the mean value of the detected through traffic flow at detector d in 

the past p intervals before the time interval t. ∑
=
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Type A control variable is defined to detect the absolute difference between 

the detected traffic information and the predicted traffic information, based on the 

data collected before the current time interval. Type B control variable is for use in 

detecting a relative change in the traffic characteristic data in the time series. As 

revealed in Chapter 2, there exist several forecast methods that can reliably forecast 

)(tY Flow
d  and )(tY Occ

d  from the traffic data obtained before the time interval t, 

including both the parametric and non-parametric methods. The developed k-Nearest 
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Neighbors model for travel time prediction in Chapter 5 is one of the potential 

candidates, which can take best advantages of historical daily and weekly traffic 

patterns for a reliable prediction. The rule-based single-station detection algorithm is 

designed for the following two incident scenarios with two types of rules: 

 

Incident at the downstream segment of one detector location 

When one incident occurs at the downstream of detector d, the reduced 

roadway capacity at the incident location may cause queue spillback to the upstream 

and result in a lower flow rate and a higher occupancy at the location of detector d. In 

the single-station detection algorithm, the following rules are for detecting the 

anomaly in the traffic volume and the occupancy at detector d: 

IF D
Occ

Occ
id TA 1, >  for all i, THEN 

 IF D
Flow

Flow
id TA 1, >  for all i, THEN 

One incident is detected at the downstream segment of  

detector d 

 ELSE 

  No incident can be reliably detected. 

 END 

ELSE 

 No incident can be reliably detected. 

END         (6.3) 

where max1 ii ≤≤ , 

 D
OccT 1  and D

FlowT 1  are pre-determined thresholds. 
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 To reduce the false alarm rate, the algorithm requires imax consecutive 

intervals to confirm a detected incident as shown in Eq. 6.3. 

 

Incident at the upstream segment of one detector location 

An incident incurred at the upstream location of a detector may cause a 

substantial decrease in volume that shall be much lower than that in the previous 

intervals and historical patterns. However, one needs to distinguish the similar traffic 

pattern caused by the traffic spillback from an off-ramp or a lane drop. Therefore, the 

impacts of these factors need to be considered when predicting )(tY Flow
d  and )(tY Occ

d , 

i.e., the traffic conditions in these critical lanes need to be included in the input 

dataset. The following rules are used to detect incidents at the upstream segment of 

one detector location: 

IF U
Occ

Occ
id TA 1, <  for all i, THEN 

 IF U
Flow

Flow
id TA 1, >  for all i, THEN 

  One incident is detected at the upstream segment of detector d 

 ELSE 

  No incident can be reliably detected. 

 END 

ELSE 

 No incident can be reliably detected. 

END         (6.4) 

where max1 ii ≤≤ , 

 U
OccT 1  and U

FlowT 1  are pre-determined thresholds. 
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Notice that the developed rule-based single-station incident detection 

algorithm may not efficiently detect some incidents, especially those occurred at a 

location far from both detectors in a long link. Therefore, the following dual-station 

incident detection algorithm is proposed for incidents in the middle of the long link 

under certain types of geometric features and traffic patterns. 

6.4 Dual-station Incident Detection Algorithm 

The proposed dual-station incident detection algorithm, as shown in Figure 

6.2, consists of two components: a filtering function and an incident detection model. 

A k-Nearest Neighbors model serves as the filtering function to identify whether the 

current traffic scenario has been observed in the historical dataset. Due to the 

complex interactions between many factors and the long detector spacing, traffic 

scenarios with different spatial patterns may yield the similar volume and/or 

occupancy at the detector location over some periods. Hence, a filtering function 

based on the historical data is necessary to minimize the potential false alarms. To do 

so, one needs to select all lanes across both upstream and downstream detectors to 

construct the input dataset of the k-Nearest Neighbors model, which will output NS, 

the number of similar historical cases found in the predefined searching window. If 

kN S ≥ , the dual-detector incident detection algorithm will stop and output to the 

incident detection module to indicate that no incident can be reliably detected at this 

time. Otherwise, the second component will be executed to detect the existence of an 

incident. 
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Figure 6.2. Flowchart of the dual-station incident detection algorithm 
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incidents under certain traffic conditions. In applying the dual-station incident 

detection algorithm, one shall first compute the differences between smoothed 

upstream and downstream occupancy data before and after the occurrence of the 

incident. A general form of the difference between smoothed data is defined in Eq. 

6.5. 

),(),(),( 1 ntOCCntOCCntOCC ddd +−=Δ     (6.5) 

where: ),( ntOCCd  is the smoothed occupancy at time t+n-1 from the detected actual 

occupancy data between time t and t+n-1 at detector d. 

The dual-station incident detection algorithm will then define two time 

periods, m intervals before the incident occurrence for representing the current normal 

recurrent congestion pattern and n intervals after the time when incident occurs to 

represent the time delay for the resulted impact from the incident to be detected. One 

may first obtain the maximum smoothed occupancy from actual detector data under 

the recurrent congestions from Eq. 6.6: 

)),(),(max()(max 1 mmtOCCmmtOCCtOCC ddd −−−= +   (6.6) 

Then, the algorithm will use the following two rules for the congestion test 

(Eq. 6.7) and the incident test (Eq. 6.8). 

Cdd TtOCCntOCC >Δ )(max/),(      (6.7) 

where CT  is a pre-determined threshold. 

Iddd TtOCCmmtOCCntOCC >−Δ−Δ )(max/)),(),((   (6.8) 

where IT  is a pre-determined threshold. 
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If both tests pass, the dual-detector incident detection algorithm will report to 

the incident detection module that there exists one incident with a detection lag of n 

intervals. 

6.5 Summary 

This chapter develops an incident detection module for the travel time 

prediction system. This module consists of two incident detection algorithms, a 

single-station incident detection algorithm that is efficient for detecting incidents 

close to a detector station and a dual-station incident detection algorithm for detecting 

incident far from both detectors in a long link. The single-station incident detection 

algorithm predicts the current traffic condition with previous collected data and 

monitors both absolute and relative differences between the predicted traffic data and 

the detected traffic data at the current time interval to detect the existence of one 

incident. The dual-station incident detection algorithm first identify if the current 

traffic pattern has been observed in the history or not with its filtering function, a k-

Nearest Neighbors model. If no sufficient historical matches can be found, the 

module will apply the traditional dual-station incident detection algorithm. If any of 

the two embedded algorithm returns with a positive detection result, the incident 

detection module will output a detection of one on-going incident to the travel time 

prediction model. 
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Chapter 7: System Implementation Procedures and Performance 
Evaluation 

 

7.1 System Implementation Procedures 

This chapter presents the principal procedures for implementing the automatic 

real-time travel time prediction system (ARAMPS) for work-zone operations, 

followed by the evaluation of the travel time prediction performed by ARAMPS, 

which  integrates advanced models, cost-efficient traffic detection system, wireless 

communications, and its developed control and operation software in a portable, 

automated, and user-friendly system. 

The system implementation process consists of three stages: system 

preparation, model training, and real-time operation stages. The rest of this section 

will describe core tasks in each of the three stages in sequence. 

 

Stage 1: System Preparation 

The system preparation stage is for identifying potential time-varying impacts 

due to recurrent traffic congestions, work-zone operations, and geometric features, 

which are the important criteria for determining optimal detector locations. Another 

principal task at this stage is to calibrate detectors and test other required hardware, 

including communication devices, database servers, and web servers. 

 

Review of the work-zone plan 

To take into account both the geometry impacts and traffic patterns in design 
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of the travel time prediction system, it is very important to carefully analyze the 

following issues associated with the work-zone operational plan: 

• The lanes scheduled to close, including mainline lanes and ramps, and the 

length of the closed segment; 

• The geometric changes that may take place in the target segment, 

including lane shifts, changes on auxiliary lanes, and ramp closure etc.; 

and 

• The work schedule for lane closure, including both the time-of-day and the 

operational duration in each day. 

 

Site surveys 

A careful site survey is an essential task to collect the following information: 

• Geometric features of the target segment, including both mainlines and 

ramps; 

• Time-varying traffic patterns during the congested periods (for example, 

morning and evening peak hours); and, 

• Main ramps and critical lanes that carry a large volume of traffic. 

In the survey, one also needs to identify the approximate locations of 

frequently observed queues due to the combined impact of traffic patterns, ramps, 

geometry change, and other factors. This type of information can be collected through 

field observations, traffic counts at key locations, or from a well-calibrated traffic 

simulation environment. 
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Determining the detector locations 

With the information collected from the previous two tasks, one can determine 

candidate locations for deploying detectors based on the work-zone plans, geometric 

features of the target segment, daily and/or weekly traffic patterns, and the strengths 

of candidate models developed for ARAMPS. 

 

Determining the model structures 

Based on the revealed traffic patterns and geometric features in the target 

segment, one can determine the number of models needed to predict travel times 

under different levels of traffic conditions. For example the model structure for 

frequently recurrent congestion patterns may be different from the model for those 

relatively less observed traffic conditions. 

 

Installing and calibrating the detection system 

Once detectors have been installed at designated locations, one needs to 

calibrate all detectors under all types of traffic conditions. Both calibration and 

validation are essential tasks and cannot be skipped so as to prevent dramatic 

performance deterioration due to unreliable detector data under one or more types of 

traffic conditions or the impact of certain vehicle types (for example, long trucks). 

The validation process shall include verifications on volume counts and speed under 

different congestion levels 
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Installing communication devices, variable message signs and other required 

equipments 

ARAMPS system requires communication between detectors and servers, 

from servers to variable signs, and servers to servers. To prevent the system from 

displaying untimely messages and unreliable predictions due to communication 

failures, one needs to properly address the following issues: 

• Placing a timer on each VMS to shutdown the display if no message has 

been received over a prespecified interval (i.e., 10 minutes in ARAMPS); 

• Installing a program on the data server to detect missing data; and 

• Developing system monitors to detect the loss of communication to signs, 

service interruption of servers and accidents. 

 

Stage 2: Model Training 

The main tasks at this stage are to calibrate the system parameters and to build 

the historical travel time database. The purpose is to ensure that the detectors are 

ready to transfer traffic data to the server in either the real-time mode or store them in 

their local storage devices. This stage consists of the following primary tasks. 

 

Field surveys on travel times 

To train and/or calibrate all models in the four system modules in ARAMPS 

with data from detectors, one needs to synchronize the survey time with the internal 

times embedded in all detectors prior to the survey so as to avoid data inconsistency. 

At the model-training stage of the ARAMPS system, survey personnel always used 
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the time from GPS satellites to synchronize times between all devices. 

To collect a sufficient amount of travel time samples for model training and/or 

calibration in ARAMPS, this study has employed several survey methods, including 

vehicle matching with videos from both upstream and downstream detectors, license 

plate number matching with videos taken at upstream and downstream detectors, and 

driving in the target segment with GPS devices. To capture the impacts of both daily 

and weekly traffic patterns, the surveys conducted for ARAMPS covered both 

morning peak hours, evening peak hours, and non-peak hours of different weekdays. 

 

Long-term collection of traffic data 

ARAMPS system needs a long period of data to build its historical traffic 

database and then apply the travel time estimation module in the next step to 

construct the historical travel time database prior to the field demonstration. This 

study has taken a four-month period to gather sufficient information of various traffic 

patterns for use in model development. 

 

Calibration of system parameters and the construction of the databases 

As mentioned in the previous chapters, all principal modules need training 

and/or calibration. The travel times collected in field surveys will be divided into two 

groups, one group for model training/calibration and the rest for model verification. 

Models in the travel time estimation module were calibrated first, and then applied to 

estimate travel times for the construction of the historical travel-time database. The 

estimated historical travel times will in turn be used along with actual travel times 
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collected in the field surveys to develop the travel time prediction model. 

 

Implementation and testing of system monitors 

To ensure the system’s reliability during real-time operations, one needs to 

carefully evaluate the sensitivity and functionalities of the system monitors. All 

system monitors are expected to report failure or critical conditions of any of the 

following items in a timely manner. 

• Detectors 

• VMS signs 

• Databases of traffic data and historical travel times 

• System servers, including both data servers and web servers 

• Communications between detectors, VMS and servers 

• Incident detection 

• Missing and/or delayed data 

 

Stage 3: Real-line Operation 

At this stage, all system components are in the real-time operation mode. The 

system will output its prediction results on the VMS signs and the system website 

(http://i70.umd.edu); and send system alerts to administrators’ emails and cell phones. 

 

Review of the automated daily report 

This study has designed an automated system daily report to present important 

information associated with the system’s current status, which may also contain early 
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signs of device failures. For example, if missing data occurs at one detector location 

frequently, it probably indicates a potential failure of either the detector or the 

attached communication device. 

 

System performance evaluation with field data 

After successfully operating ARAMPS in real time over the initialization 

period, the research team has conducted extensive field studies to assess the system’s 

accuracy and reliability. The system parameters may require a re-calibration if some 

significant inconsistencies between surveyed travel times and system outputs exist. 

7.2 System Performance Evaluation 

ARAMPS system has been implemented on I-70 for demonstrating its 

potential to provide reliable travel time prediction with sparsely distributed detectors 

for work-zone and other freeway operations. Ten traffic detectors were installed at 

locations determined by the research team of University of Maryland in May 2005. It 

took about 8 months for the contractor to finish the calibration of the detectors with 

the help from the manufacturer, and to setup up the communication between detectors 

and University of Maryland servers. The research group conducted data validation 

several times in this 8-month period to ensure the reliability of detector data. The 

real-time data transmission started to operate in late January 2006. Once 4-month 

complete data has been collected, ARAMPS system started to operate in the real-time 

mode from June 4th, 2006. The demonstration lasted for two months until August 4th, 

2006. This section will present the system implementation site and the performance 

evaluation of prediction results. 
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7.2.1 System Site 

ARAMPS system has been implemented on a 25-mile stretch of I-70 

eastbound between MD27 and I-695 (Figure 7.1). As shown in Figure 7.2, 10 

detectors have been placed unevenly in the target segment to maximize the model 

efficiency. Table 7.1 summaries the relative location of each detector to its nearby 

cross road or mileage marker. There are a total of five VMS signs placed in the target 

segment at locations determined by Maryland State Highway Administration for 

concurrently displaying predicted travel times from each sign to I-695 in real time. 

Figure 7.3 shows the locations of five VMS signs, whose geographical coordination 

and relative locations have been summarized in Table 7.2. 

 

Figure 7.1 Locations of ten detectors in ARAMPS 

7.2.2 Performance Evaluation 

This section presents the performance evaluation of the developed travel time 

prediction system based on the actual travel times collected by a consulting company 

hired by the Maryland State Highway Administration. To extensively assess the 

accuracy of the predictions during congested traffic scenarios, the consulting firm 

conducted the data collection in both morning and evening peak hours from May 15th, 

2006 to May 19th, 2006, and on July 25th, 2006 and July 26th, 2006. As shown in 
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Table 7.3, the field travel-time surveys also covered the evening peak hours on July 

13th, 2006 and July 18th, 2006. During the field surveys, vehicles were dispatched at a 

headway of 10 to 15 minutes to travel over the target freeway segment to produce the 

actually travel times. In order to best estimate the system’s performance under 

recurrent congestion patterns, the evaluation dataset did not include the field travel 

times that were impacted by incidents or accidents. Drivers conducting the field 

surveys were asked to record the arrival times to Signs 3, 4 and 5, and to the 

destination, I-695. 

Table 7.1 Description and geographic locations of ten detectors  

Detector 
ID Location Longitude Latitude 

1 About 1000 feet pass MD27 -77.163174 39.359605 

2 About 500 feet pass the on-ramp 
from MD32 to I-70EB -76.941133 39.307418 

3 Right before the split of I-70 and 
US40 -76.918053 39.304853 

4 
At the acceleration area of the on-
ramp from Marriottsville Rd. to I-
70EB 

-76.894104 39.304877 

5 Between the mileage marker 84 and 
85 -76.874133 39.302298 

6 At the mileage marker 86 -76.848583 39.295600 

7 At the deceleration area of the off-
ramp to US29 Southbound -76.830809 39.296183 

8 At 2-mi to I-695 sign -76.790894 39.306034 
9 At 1-mi to I-695 sign -76.771548 39.306553 

10 At the split of I-70 to Park and Ride 
and to I-695 -76.752429 39.306717 
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Figure 7.2 (a) to (j) detailed location of each detector 
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Figure 7.3 Locations of five VMS signs in ARAMPS 

Table 7.2 Description and geographic locations of five VMS signs 

Sign 
ID Location 

Distance 
To I-695 
(Miles) 

Longitude Latitude 

1 West of Attraction sign for MD 
94 20.78 -77.111216 39.350566 

2 West of Weigh Station 13.41 -76.981783 39.318216 
3 800 feet East of U.S. 40 Sign 10.06 -76.921850 39.305333 
4 East of Bethany Lane 6.17 -76.852233 39.295650 

5 In Median - East of Patapsco 
River Bridge 2.77 -76.793550 39.305700 

 

Table 7.3 shows the information of collected travel times on each survey day, 

which clearly indicate that the subsegment from Sign 5 to I-695 was heavily 

congested in the evening peak hours. Its maximum travel time in the evening peak 

hours during some field observation days were 4 times more than that during the 

morning peak hours. The observed maximum travel time in the subsegment from 

Sign 3 to I-695 in the morning is between 726 to 958 seconds, compared to 1,288 

seconds in the evening peak hours. The high variation of traffic conditions in the 
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target freeway segment made the travel time prediction a very challenging task. 

Table 7.3 Field-measured travel times on each survey day by segment 

Travel Time (sec) 
Sign 3 to I-695 

(10.1 mi) 
Sign 4 to I-695 

(6.1 mi) 
Sign 5 to I-695 

(2.8 mi) Date and Time Sample 
Size 

Max. Avg. Max. Avg. Max. Avg. 
5/15/2006 AM 7 958 740 465 400 230 169 
5/15/2006 PM 8 1161 843 996 625 821 462 
5/16/2006 AM 14 768 615 370 330 180 135 
5/16/2006 PM 14 1088 712 882 514 705 335 
5/17/2006 AM 14 907 711 455 362 240 156 
5/17/2006 PM 6 934 823 751 609 564 433 
5/18/2006 AM 14 785 614 363 326 170 130 
5/18/2006 PM 10 1288 1138 1068 927 880 739 
5/19/2006 AM 14 765 620 442 355 219 153 
5/19/2006 PM 7 906 813 689 566 493 399 
7/13/2006 PM 14 764 590 558 385 379 204 
7/18/2006 PM 14 883 618 659 399 476 221 
7/25/2006 AM 14 726 616 406 346 198 146 
7/25/2006 PM 14 782 597 578 379 397 198 
7/26/2006 AM 14 827 618 561 361 338 157 
7/26/2006 PM 14 1173 826 948 604 756 422 

Total 192  
 

As requested by the Maryland State Highway Administration, the field 

demonstration system displays the predicted travel time in a range of ±1.5 minutes 

around the predicted value, if it is less than 7 minutes, in a range of ±2 minutes for all 

other conditions. (see Figure 7.4). 

Hence, the performance evaluation for ARAMPS was based on its displayed 

travel time ranges and the travel times collected from field trips for the 

aforementioned three subsegments, respectively. As shown in Table 7.4, ARAMPS 

seemed to achieve 97.9% prediction accuracy for the travel time for Sign 3 to I-695, 

96.9% prediction accuracy for Sign 4 to I-695, and 92.7% prediction accuracy for 

Sign 5 to I-695. The system only failed to provide reliable travel times for 4, 6 and 14 
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out of 192 cases of these three subsegments, respectively. As seen in Table 7.4, most 

unsuccessful predictions in the subsegment from Sign 3 to I-695 incurred on the day 

having long average travel times. 

 

Figure 7.4 Display of the predicted travel time range 

Overall, ARAMPS system was able to reliably predict the travel times for the 

target freeway segment under light traffic and moderately congested conditions. More 

detectors may be needed to place on those heavily congested segments to increase the 

prediction accuracy. 
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Table 7.4 Performance evaluation of the developed travel time prediction system 

 Sign 3 to I-695 Sign 4 to I-695 Sign 5 to I-695 

Time Avg. 
T.T. 

# of 
Correct 
Cases 

# of 
All 

Cases 

Avg. 
T.T. 

# of 
Correct 
Cases 

# of 
All 

Cases 

Avg. 
T.T. 

# of 
Correct 
Cases 

# of 
All 

Cases 
05/15 
AM 740 7 7 400 7 7 169 7 7 

05/15 
PM 843 7 8 625 7 8 462 7 8 

05/16 
AM 615 14 14 330 14 14 135 14 14 

05/16 
PM 712 14 14 514 13 14 335 13 14 

05/17 
AM 711 14 14 362 14 14 156 14 14 

05/17 
PM 823 5 6 609 6 6 433 5 6 

05/18 
AM 614 14 14 326 14 14 130 14 14 

05/18 
PM 1138 9 10 927 9 10 739 9 10 

05/19 
AM 620 14 14 355 14 14 153 14 14 

05/19 
PM 813 7 7 566 7 7 399 7 7 

07/13 
PM 590 14 14 385 14 14 204 14 14 

07/18 
PM 618 14 14 399 14 14 221 14 14 

07/25 
AM 616 14 14 346 14 14 146 11 14 

07/25 
PM 597 14 14 379 14 14 198 13 14 

07/26 
AM 618 14 14 361 14 14 157 11 14 

07/26 
PM 826 13 14 604 11 14 422 11 14 

Total  188 192  186 192  178 192 
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7.3 Conclusions 

This chapter presents the step-by-step description of procedures for 

developing and implementing a real-time travel time prediction system for freeway 

segments, including the performance evaluation results. 

The implementation includes three stages: system preparation stage, model-

training stage, and real-time operation stage. The system preparation stage usually 

takes about one month for system designers to determine detection locations, based 

on geometric features and daily traffic patterns in each segment. It is recommended 

that one should collect four-month data to build the historical travel time database for 

developing the prediction models. The system has the capability to concurrently 

update its parameters in different models based on the most recent traffic data 

collected during the real-time operations. 

Overall with 10 detectors over the segment of 25 miles, ARAMPS system has 

demonstrated its capability in reliably predicting the travel times within an acceptable 

range. Most other travel time prediction systems would need about 50 detectors to 

achieve the same level of performance. The performance of ARAMPS was found to 

be satisfactory under light or moderate traffic conditions. The predicted range of 

travel times was found to be correct in 188, 186 and 178 out of the 192 actual travel 

time samples collected by Maryland State Highway Administration over the 

subsegment from Signs 3, 4 and 5 to I-695, respectively. 
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Chapter 8: Conclusions and Recommendations 

 

8.1 Research Summary 

This chapter presents all research tasks that have been completed, followed by 

a summary of valuable lessons learned from the development, implementation and 

operation of ARAMPS. This study has accomplished the following major tasks: 

 

Performed an in-depth review of literature associated with travel time prediction: 

The task of literature review has covered state of the art and practice on the 

following topics: travel time estimation, travel time prediction, existing simulated and 

real-world application systems. The review showed that most existing studies for 

travel time estimation and prediction are for short links with densely distributed 

detectors. Nonparametric models, such as k-Nearest Neighbor Model, are reported to 

achieve better performance than the parametric models. Previous studies also 

indicated that a proper combination of different models may improve the system’s 

reliability. However, due to the complex nature of prediction, all the existing systems 

implemented in practice use the estimated travel times, based on the current traffic 

conditions, as the displayed travel time information. 
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Developed a modeling framework for constructing a travel time prediction system 

with sparsely distributed detectors 

This task has proposed an automatic travel time prediction system for use on 

freeway segments with various geometric features and traffic patterns. The proposed 

system does not require concurrent measurements of travel times. With data from 

sparsely distributed detectors, it uses the travel time estimation module to 

continuously estimate travel times for those completed trips, and stores them in a 

database. Its prediction module will take the real-time input from traffic detectors and 

then perform the prediction with its hybrid model structure. The proposed operating 

architecture ensures that the travel times of most recently completed trips can be 

added into the database in the real-time operation, and are immediately available for 

the system to perform the prediction for the next time interval. 

 

Proposed a hybrid model for estimating travel times for freeways with sparsely 

distributed detectors 

This research has developed a hybrid travel time estimation module by 

combining a clustered linear regression model and an enhanced trajectory-based 

model. It first employs a clustering function to categorize traffic patterns observed on 

a long link, based on its congestion levels in critical lanes, and then applies the travel 

time estimation module to further calibrate a linear regression model for each cluster 

that has sufficient samples of field data. For the clusters without adequate field data, 

this study has developed an enhanced trajectory-based model as a supplemental 

component that will estimate the in-segment speed with the traffic propagation model 
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or an enhanced piecewise linear speed-based model, based on the distance from the 

vehicle’s location to detectors. 

 

Developed a hybrid model for travel time prediction 

This study has developed a hybrid model structure for the travel time 

prediction on freeways with sparsely distributed detectors. A k-Nearest Neighbor 

Model serves as the main model to take advantage of available historical travel times 

and then assess their levels of reliability. An enhanced time-varying coefficient model 

is used to serve as the supplemental component to complete the prediction of travel 

times. The developed model can take full advantage of real-time traffic data and the 

historical traffic information estimated with the travel time estimation module for 

performing the complex travel time prediction task. 

 

Proposed a rule-based hybrid incident detection algorithm for detecting major 

incidents on long freeways links 

This study has also developed a rule-based hybrid algorithm for detecting 

major incidents on freeways having long detector spacing. The developed hybrid 

incident detection module combines a single-variable algorithm for detecting major 

incidents near a detector station and a dual-variable algorithm for major incidents 

away from either detector. To reduce the false alarm rate due to factors such as long 

detector spacing, complex geometric features and various traffic patterns, the incident 

detection module embedded a k-Nearest Neighbor model taking into account both 

daily and weekly traffic patterns to filter potential false alarms. 
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Implemented the developed system and evaluated its performance 

The developed automatic real-time travel time prediction system (ARAMPS) 

has been implemented on a 25-mile stretch of I-70 eastbound from MD27 to I-695 to 

demonstrate its applicability. In contrast to most real-world travel time prediction 

system that requires one detector at every 0.5-mile, the entire system employed only 

10 roadside traffic detectors to cover the freeway segment of 25 miles. The field 

performance evaluation conducted by a third party has indicated that the 

demonstrated ARAMPS can successfully achieve more than 92 percent of accuracy in 

predicting travel times during both morning and evening peak periods for the target 

segment. The system’s embedded missing data estimation module and the incident 

detection module have significantly increased the system’s operational reliability. 

 

8.2 Lessons Learned from Developing, Implementing and Operating a 

Travel Time Prediction System 

To take advantages of invaluable experience obtained from the system 

development and the demonstration project, the research team has summarized the 

following critical lessons for future deployment of travel-time prediction systems. 

 

Multi-model structure can better capture the impacts of complex geometric features 

and various traffic patterns on the travel time prediction 

The research team found that a single-model structure cannot well capture the 

impacts on travel times due to the complex interactions between geometric features, 

recurrent traffic patterns and the sparseness of detector spacing. 
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Place the detectors at critical locations to maximize their effectiveness 

In determining the optimal detector locations, the research team found that the 

prediction accuracy varies significantly with the distribution of detector locations, 

especially for a system with long detector spacing. One needs to carefully evaluate 

the potential detector errors in each link between two neighboring detectors so as to 

optimize the overall system performance. Usually, segments that may incur high 

variation of travel times need more detectors than segments with light traffic or less-

congested traffic conditions. 

 

Need to have an effective model to contend with the inevitable missing data issue 

during the real-time operation 

Over the entire six months of system reliability test and improvement, the 

issue of missing data due to either communication failures or detector malfunctions 

emerges quite often. To avoid frequent system suspensions due to inadequate data for 

predicting travel times, it is critical to embed an effective module to the deployed 

travel time prediction system in order to contend with the missing data issues, which 

will in turn extend the system’s operating period. 

 

All deployed detectors require a careful calibration and validation task 

Most existing detector manufacturers tend to overstate the effectiveness of 

their products and understate the required efforts for system calibration. For example, 

in the ARAMPS project, a 2-week period was scheduled for calibrating all detectors 

for traffic flow, occupancy, and speeds. However, it took more than 6 months for the 
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experts from the detector manufacturer to complete the calibration for 10 RTMS 

detectors. It has been found that without proper calibration, RTMS detectors will 

yield large non-systemic errors on volume counts and speed measurements regardless 

of the traffic condition. The low quality traffic data provided by poorly calibrated 

detectors will render the travel time prediction becoming a meaningless task. 

 

Speed data provided by most radar detectors (such as RTMS) are not reliable for use 

in the travel time estimation and prediction 

Another important issue identified in this research is the unreliable speed data 

measured by the radar detectors (Zou and Wang, 2006). The accuracy of speed data 

detected by most existing traffic detectors is subject to a rigorous evaluation, 

especially during congested traffic conditions where vehicles may experience stop-

and-go patterns. Unless having some substantial advance in traffic detection 

technologies, it is strongly recommended that the spot speed data should not be used 

for developing any travel time prediction system. 

 

Need a careful test of communications between all system components to ensure the 

high data availability 

During the system’s testing period, the research team identified that the 

detector data provided by deployed detectors were frequently not available due to 

software issues associated with the short data retrieval time interval and the 

communication mechanism in the system provider’s control server. The frequent data 

loss will certainly have significant impact on the reliability and credibility of a travel 
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time prediction system. 

 

Implement an auto shutdown mechanism for each VMS to ensure the system’s 

credibility 

To avoid displaying old information due to a system communication error, it 

is essential for every VMS to be equipped with a timer to shutdown its display when 

no new message has been received over a pre-specified interval (e.g., 10 minutes). 

The VMS will resume its display task when the updated message becomes available. 

This timer has been found to be very useful in ensuring the VMS’s credibility as the 

cell phone data network used to transfer detector data and to display messages is not 

as reliable as expected. 

 

Need an automated system monitor in real-time operations 

During real-time operations, there exist many issues that may significantly 

reduce the prediction reliability and/or impact the system’s outputs, and thus require 

the system operators to take the necessary actions in a timely manner. In the 

ARAMPS demonstration, the research team has designed a system monitor that will 

send alerts to system administrators via emails and cell phone messages when 

experiencing undesirable performance data from the following system components: 

─ Detectors 

─ VMS signs 

─ Databases of traffic data and historical travel times 

─ System servers, including both data servers and web servers 
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─ Communication between detectors, VMS and servers 

─ Incident detection 

─ Missing and/or delayed data 
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Appendix A. Variable Definitions 
 

d : Detector ID. Detectors are numbers from the upstream. 
D : Total number of detectors. 
al : Lane ID. Lane ID is numbered from right to left. 

dL : The length of the link (d, d+1). 
)(tdτ : Travel time for the vehicle to traverse the link (d, d+1) with a departure time t. 

)(tτ : Travel time for the vehicle to traverse the entire segment with a departure time 
t.  

)(tu j
d : The average speed of the vehicle to traverse the jth half of the link (d, d+1). 

j=1 or 2. 
),(ˆ ttuThru

d Δ : The average speed of the through traffic at the location of detector d in a 
time interval tΔ  from time t. 

),(, ttu
ald Δ : The average speed in lane la at detector d in a time interval tΔ  from time 

t. 
),(, tto

ald Δ : The average occupancy in lane la at detector d in a time interval tΔ  from 
time t. 

),(, ttv
ald Δ : The cumulative traffic count in lane la at detector d in a time interval tΔ  

from time t. 
p: Index of the traffic scenarios. 

d
pγ : The average proportion of time taken for vehicles to traverse the first half of the 

link (d, d+1). 
=+ )(1, pd

ddCLT  {all critical through lanes at the upstream detector, which 
significantly contribute to computing the average through traffic 
condition in link (d, d+1) under traffic scenario p.} 

=+ )(1, pd
ddCLR  {all critical ramp lanes at the upstream detector, which significantly 

contribute to computing the average through traffic condition in link 
(d, d+1) under traffic scenario p.} 

=+
+ )(1

1, pd
ddCLT  {all critical through lanes at the downstream detector, which 

significantly contribute to computing the average through traffic 
condition in link (d, d+1) under traffic scenario p.} 

=+
+ )(1

1, pd
ddCLR  {all critical ramp lanes at the downstream detector, which 

significantly contribute to computing the average through traffic 
condition in link (d, d+1) under traffic scenario p.} 

u(x,t):  The speed of one vehicle when it arrives at location x with a departure time t 
from the upstream node of a link. 

o(x,t):  The occupancy of a very small segment at one vehicle’s location x with a 
departure time t from the upstream node of a link. 
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),( tttTC al
d Δ+ : the traffic type in lane la at detector d from time t to t+Δt 

),( ttto al
d Δ+ : the average occupancy in lane la at detector d from time t to t+Δt 

al
dOF  and al

dOC : the upper bound of free-flow occupancy and lower bound of heavy 

congestion occupancy for lane la at detector d respectively. 

mdis: the modified distance for defining the similarity in a k-Nearest Neighbors 

model. 
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